
CITS2002	Systems	Programming		

1 next	→ 	CITS2002 	CITS2002	schedule 	

An	Introduction	to	Operating	Systems
What	is	an	operating	system?

A	piece	of	systems	software	that	provides	a	convenient,	efficient	environment	for	the	execution	of	user	programs.

It's	probably	the	largest	and	most	complex	program	you'll	ever	run!

Why	do	we	need	an	operating	system?

The	user's	viewpoint:	
to	provide	the	user	interface,	command	interpreter,	and	directory	structure,	and	to	execute	application	programs
(word	processor,	email	client,	web	browser,	MP3	player).

The	programming	environment	viewpoint:	
to	enhance	the	bare	machine,	to	provide	utility	programs	(such	as	compilers,	editors,	filters),	to	provide	high-level
input	and	output	(I/O),	to	structure	information	into	files,	and	to	improve	access	to	memory	(size,	protection,
sharing).

The	efficiency	viewpoint:	
to	replace	the	(long	departed)	human	operator,	to	schedule	tasks,	to	efficiently	store	and	retrieve	data,	and	to
invoke	and	share	programs.

The	economic	viewpoint:	
to	allow	simultaneous	use	and	scheduling	of	resources,	including	disk-bound	data	and	expensive	peripherals.

Traditionally,	we	would	summarize	an	operating	system's	goals	as	making	"the	system"	convenient	to	use	and	scheduling
its	resources	efficiently	and	fairly.

In	addition,	it	must	support	hardware	and	software	not	yet	developed.

	

CITS2002	Systems	Programming,	Lecture	3,	p1,	29th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 2 next	→ 	CITS2002 	CITS2002	schedule 	

Operating	System	≠	User/Computer	Interface
An	operating	system	is	often	simply	seen	and	described	as	the	user/computer	interface.

We	often	(mistakenly)	claim	to	understand,	and	like	or	dislike,	an	"operating	system"	based	on	its	interface.

Such	an	interface	provides	us	with:

program	creation	(editors,	compilers,	debuggers,	linkers)
program	execution	(character	and	graphical)
access	to	I/O	devices	(both	fixed	and	removable)
constrained	access	to	files	of	media
constrained	access	to	"internal"	resources
error	detection,	response,	reporting,	and
accounting	and	monitoring.

Whether	or	not	a	certain	interface	runs	on	a	particular	hardware	or	operating	system	platform	is	usually	dictated	by
economics,	marketing,	and	politics	-	not	technology.

	

CITS2002	Systems	Programming,	Lecture	3,	p2,	29th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 3 next	→ 	CITS2002 	CITS2002	schedule 	

Operating	System	≡	Resource	Manager
An	operating	system	is	better	considered	as	being	in	control	of	its	hardware	and	software	resources.

Better	still,	because	the	"controls"	are	often	temporal	or	external	to	the	operating	system	itself,	let's	consider	the	operating
system	as	a	resource	manager.

An	operating	system	is	just	another	program	running	on	the	available	hardware.

Most	of	the	time,	the	operating	system	relinquishes	control	to	the	user	processes	until	the	hardware	again	dispatches	the
control.

	

CITS2002	Systems	Programming,	Lecture	3,	p3,	29th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 4 next	→ 	CITS2002 	CITS2002	schedule 	

Operating	Systems	Must	Be	Extensible
Of	importance	is	an	operating	system's	ability	to	evolve	to	meet	new	hardware	and	software	demands:

New	hardware	is	constantly	introduced	-	adding	more	memory	presents	little	difficulty;	new	types	of	disks,	video
cards,	etc,	are	more	problematic.
New	application	programs,	tools,	and	system	services	are	added.
Fixes	and	patches	are	released	to	correct	operating	system	deficiencies.

All	of	this	suggests	that	the	operating	system,	as	a	program,	needs	to	be	extensible	-	a	modular	design	seems	essential.
Consider	the	following	figure:

A	view	of	operating	system	services

Of	course,	the	above	diagram	provides	a	very	simplified	representation	of	operating	systems	and	their	services.	In	practice,
the	relationships	between	the	modular	components	become	very	complex	-	Linux	and	Windows-10

and	the	Interactive	map	of	Linux	kernel.

	

CITS2002	Systems	Programming,	Lecture	3,	p4,	29th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
file:///Users/chris/Sites/cits2002/lectures/lecture03/images/linux-kernel-map.jpg
file:///Users/chris/Sites/cits2002/lectures/lecture03/images/windows-kernel-map.png
https://makelinux.github.io/kernel/map/

CITS2002	Systems	Programming		

←	prev 5 next	→ 	CITS2002 	CITS2002	schedule 	

Traditional	Operating	System	Services

CPU	scheduling:
distribute	or	apportion	computing	time	among	several	processes	(or	tasks)	which	appear	to	execute
simultaneously.

Memory	management:
divide	and	share	physical	memory	among	several	processes.

Swapping:
move	processes	and	their	data	between	main	memory	and	disk	to	present	the	illusion	of	a	bigger	machine.

I/O	device	support:
provide	specialized	code	to	optimally	support	device	requirements.

File	system:
organize	mass	storage	(on	disk)	into	files	and	directories.

	

CITS2002	Systems	Programming,	Lecture	3,	p5,	29th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 6 next	→ 	CITS2002 	CITS2002	schedule 	

Traditional	Operating	System	Services,	continued

Utility	programs:
accounting,	setting/constraining	system	resource	access,	manipulating	the	file	system.

A	command	interface:
textual	or	graphical,	to	enable	interactive	interrogation	and	manipulation	of	operating	system	features.

System	calls:
allow	constrained	access	to	the	interior	of	the	running	operating	system	(as	a	program).

Protection:
keep	processes	from	interfering	with	each	other,	their	data,	and	"the	system",	whilst	permitting	sharing	when
requested.

Communication:
allow	users	and	processes	to	communicate	within	a	single	machine	(inter-process	communication),	and	across
networks.

	

CITS2002	Systems	Programming,	Lecture	3,	p6,	29th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 7 next	→ 	CITS2002 	CITS2002	schedule 	

A	Whirlwind	History	of	Operating	Systems
To	understand	the	way	modern	operating	systems	are	the	way	they	are,	it	is	useful	to	examine	their	evolution	over	the	last
almost	eighty	years.

Advances	in	operating	systems	often	accompanied	advances	in	hardware,	falling	prices,	and	"exploding"	capacities.

The	first	true	digital	computer	was	designed	by	English
mathematician	Charles	Babbage	(1792-1871).

Although	Babbage	spent	most	of	his	working	life	and	fortune
building	his	"analytical	engine",	its	mechanical	design	and	the
wooden	technology	of	the	day	could	not	provide	the	required
precision.

Needless	to	say,	the	analytical	engine	did	not	have	an	operating
system.

	

CITS2002	Systems	Programming,	Lecture	3,	p7,	29th	July	2024.

Everything	that	can	be	invented	has	been	invented.
— Charles	H.	Duell,	Commissioner,	U.S.	Office	of	Patents,	1899.“

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 8 next	→ 	CITS2002 	CITS2002	schedule 	

1945-55:	Vacuum	Tubes	and	Plugboards
Until	World	War	II,	little	progress	was	made	in	constructing	digital	computers.	Six	significant	groups	can	reasonably	claim
the	first	electrical	computers:

Tommy	Flowers	and	Max	Newman,	Bletchley	Park,	England,
Howard	Aitken,	Harvard,
John	von	Neumann,	Institute	of	Advance	Studies,	Princeton,
Tom	Kilburn	and	Freddie	Williams,	Manchester,
J.P.	Eckert	and	W.	Mauchley,	University	of	Pennsylvania,	and
Konran	Zuse,	Germany.

A	single	group	of	people	designed,	built,	programmed,	operated	and	maintained	each	machine.	Although	filling	small
warehouses,	with	tens	of	thousands	of	vacuum	tubes,	they	were	no	match	for	today's	cheapest	home	computers.

Programs	were	loaded	manually	using	console	switches,	or	more	likely	by	direct	reconfiguration	of	wiring;	indication	of	a
program's	execution	and	debugging	returned	through	console	lights.

Advantages:	
Interactive,	and	user	received	immediate	response.

Disadvantages:	
Expensive	machine	was	idle	most	of	the	time,	because	people's	reactions	(and	thinking)	were	slow.
Programming	and	debugging	were	tedious;	hardware	was	very	unreliable.
Each	program	was	self	contained,	including	its	own	code	for	mathematical	functions	and	I/O	device	support.

	

CITS2002	Systems	Programming,	Lecture	3,	p8,	29th	July	2024.

I	think	there	is	a	world	market	for	maybe	five	computers.
— Thomas	Watson	(1874-1956),	Chairman	of	IBM,	1943.“

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 9 next	→ 	CITS2002 	CITS2002	schedule 	

1955-65:	Transistors	and	Batch	Systems
Programming	languages	and	operating	systems	(as	we	know	them	today)	still	unheard	of.	Collections	of	subroutines
(procedures)	to	drive	peripherals	and	to	evaluate	trigonometric	functions	were	the	first	examples	of	operating	systems
services.	The	mid-1950s	saw	the	user	(still	as	the	programmer)	submitting	a	deck	of	punched	Hollerith	cards	describing	a
job	to	be	executed.

Given	the	high	cost	of	computers,	ways	to	increase
their	utility	were	quickly	sought.	The	general
solution	was	the	batch	system.

Similar/related	programs,	perhaps	each	requiring
the	FORTRAN	(FORmula	TRANslation)	compiler,
or	a	set	of	mathematical	routines,	were	batched
together	so	that	the	required	routines	need	only	be
physically	loaded	once.

Programs	were	first	written	on	paper	tape,	in	the	emerging	FORTRAN	language	or	in	assembly	language,	and	then	copied
to	punched	cards.	Such	decks	of	cards	included	job	control	cards,	the	program	itself,	and	often	the	program's	data.

Jobs	submitted	by	different	users	were	sequenced	automatically	by	the	operating	system's	resident	monitor.	Early
peripherals,	such	as	large	magnetic	tape	drives,	were	used	to	batch	input	(jobs	and	data)	and	spool	(from	Simultaneous
Peripheral	Operation	OnLine)	output.

	

CITS2002	Systems	Programming,	Lecture	3,	p9,	29th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 10 next	→ 	CITS2002 	CITS2002	schedule 	

1955-65:	Transistors	and	Batch	Systems,	continued
Generally,	an	inexpensive	computer,	such	as	an	IBM	1401,	was	used	for	reading	cards	and	printing	from	output	tapes.	The
expensive	machine,	such	as	an	IBM	7094,	was	used	solely	for	the	mathematical	computations.

Advantages:

The	(true,	computational)	computer	was	kept	busier.

Disadvantages:

The	computer	was	no	longer	interactive.	Jobs	experienced	a	longer	turnaround	time.
The	CPU	was	still	idle	much	of	the	time	for	jobs.	Other	jobs	remained	queued	for	execution.

The	significant	operating	system	innovation	at	this	time	was	the	introduction	of	a	command	interpreter	(a	job	control
language	-	JCL)	to	describe,	order,	and	commence	execution	of	jobs.

The	resident	monitor	was	also	protected	from	the	user	programs,	and	managed	the	automated	loading	of	the	programs
after	the	monitor.

	

CITS2002	Systems	Programming,	Lecture	3,	p10,	29th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 11 next	→ 	CITS2002 	CITS2002	schedule 	

1965-1980:	Integrated	Circuits	and	Multiprogramming
In	the	early	1960s,	computer	manufacturers	typically	made	two	types	of	computers	-	word-oriented,	large	scale	scientific
computers	(such	as	the	IBM-7094),	and	character-oriented	commercial	computers	(such	as	the	IBM-1401),	which	were
really	better	suited	for	I/O.

Incompatibility	and	a	lack	of	an	upgrade	path	were	the	problems	of	the	day.

IBM	attempted	to	address	both	problems	with	the	release	of	their	System/360,	a	family	of	software	compatible	machines
differing	only	in	capacity,	price	and	performance.	The	machines	had	the	same	architecture	and	instruction	set.

With	heavy	CPU-bound	scientific	calculations,	I/O	is	infrequent,	so	the	time	spent	(wasted)	waiting	was	not	significant.
However,	commercial	processing	programs	in	the	emerging	COBOL	(Computer	Oriented	Business	Organizational
Language)	often	spent	80-90%	of	its	time	waiting	for	I/O	to	complete.

The	advent	of	separate	I/O	processors	made	simultaneous	I/O	and	CPU	execution	possible.

The	CPU	was	multiplexed	(shared),	or	employed	multiprogramming,	amongst	a	number	of	jobs	-	while	one	job	was	waiting
for	I/O	from	comparatively	slow	I/O	devices	(such	as	a	keyboard	or	tape),	another	job	could	use	the	CPU.

Jobs	would	run	until	their	completion	or	until	they	made	an	I/O	request.

Advantages:

Interactivity	was	restored.
The	CPU	was	kept	busy	if	enough	jobs	were	ready	to	run.

Disadvantages:

The	computer	hardware	and	the	operating	system	software	became	significantly	more	complex	(and	there	has
been	no	looking	back	since!).

	

CITS2002	Systems	Programming,	Lecture	3,	p11,	29th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 12 next	→ 	CITS2002 	CITS2002	schedule 	

1965-1980:	Integrated	Circuits	and	Multiprogramming,	continued
Still,	the	desire	for	quicker	response	times	inspired	a	variant	of	multiprogramming	in	which	each	user	communicated	directly
with	one	of	a	multitude	of	I/O	devices.

The	introduction	of	timesharing	introduced	pre-emptive	scheduling.	Jobs	would	execute	for	at	most	pre-defined	time
interval,	after	which	it	was	another	job's	turn	to	use	the	CPU.

The	first	serious	timesharing	system	(CTSS,	from	MIT	1962)	lacked	adequate	memory	protection.

Most	(modern)	operating	system	complexity	was	first	introduced	with	the	support	of	multiprogramming	-	scheduling
algorithms,	deadlock	prevention,	memory	protection,	and	memory	management.

The	world's	first	commercially	available	time-sharing	computer,	the	DEC	PDP-6,	was	installed	in	UWA's	Physics
Building	in	1965	-	cf.	
Cyberhistory,	by	Keith	Falloon,	UWA	MSc	thesis,	2001,	and	pdp6-serials.

	

CITS2002	Systems	Programming,	Lecture	3,	p12,	29th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
http://repository.uwa.edu.au/R/-?func=dbin-jump-full&local_base=GEN01-INS01&object_id=7178
file:///Users/chris/Sites/cits2002/lectures/lecture03/pdp6-serials.txt

CITS2002	Systems	Programming		

←	prev 13 next	→ 	CITS2002 	CITS2002	schedule 	

Early	Operating	System	Security

Very	early	operating	systems,	on	one-user-at-a-time	computer	systems,
assisted	the	user	to	load	their	programs	and	commence	their	execution.

There	was	little	to	protect	and,	if	an	errant	program	modified	the	executive
program,	then	only	the	current	user	was	affected.	As	more	of	a	courtesy,	the
executive	might	clear	memory	segments	and	check	itself	before	accepting	the
next	program.

As	multi-tasking	operating	systems	emerged,	accountability	of	resource	use
became	necessary,	and	operating	system	monitors	oversaw	the	execution	of
programs.

As	with	modern	operating	systems,	there	was	the	need	to:

protect	the	operating	system	from	the	program,
protect	programs	from	themselves,
protect	programs	from	each	other,	and
constrain	data	access	to	the	correct	program(s).

Until	system	resources	became	more	plentiful	(and	cheaper)	attempts	were	made	to	maximize	resource	sharing	-	security
was	a	consequent,	not	an	initial,	goal.

e.g.	process	scheduling	policies	were	dominated	by	already	running	processes	requesting
resources	(such	as	libraries	and	tapes)	that	were	already	in	use.

At	this	level,	computer	security	is	more	concerned	with	reliability	and	correctness,	than	about	deliberate	attacks	on
programs,	data,	and	the	system.

	

CITS2002	Systems	Programming,	Lecture	3,	p13,	29th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 14 next	→ 	CITS2002 	CITS2002	schedule 	

1970s:	Minicomputers	and	Microcomputers

Another	major	development	occurring	in	parallel	was	the	phenomenal	growth	in	minicomputers,	starting	with	the	DEC
(Digital	Equipment	Corporation)	PDP-1	(Programmed	Data	Processor)	in	1961.	The	PDP-1,	with	4K	of	18-bit	words	cost
only	US$120,000	-	5%	of	the	IBM	7094.

The	trend	was	towards	many	small	mid-range	personal	computers,	rather	than	a	single	mainframe.

Early	minicomputers	and	microcomputers	were	simple	in	their	hardware	architectures,	and	so	there	was	some	regression	to
earlier	operating	system	ideas	(single	user,	no	pre-emption,	no	multiprogramming).

For	example,	MS-DOS	on	an	IBM-PC	(circa.	1975)	was	essentially	introduced	as	a	batch	system,	similar	to	those	of	the
1960s,	with	a	few	modern	additions,	such	as	a	hierarchical	file	system.

With	some	notable	exceptions,	the	trend	quickly	moved	towards	support	of	all	modern	operating	system	facilities	on
microcomputers.

Perhaps	most	significant	has	been	the	evolution,	and	importance,	of	operating	systems'	user	interfaces.

In	particular,	the	graphical	desktop	metaphor	has	remained	for	some	time.

	

CITS2002	Systems	Programming,	Lecture	3,	p14,	29th	July	2024.

There	are	only	two	things	to	come	out	of	Berkeley,	Unix	and	LSD,	and	I
don't	think	this	is	a	coincidence.
— Jeremy	S.	Anderson.

“

There	is	no	reason	anyone	would	want	a	computer	in	their	home.
— Ken	Olsen,	DEC	Founder	and	Chairman,	1977.“

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 15 next	→ 	CITS2002 	CITS2002	schedule 	

1980-90s:	Personal	Computers	and	Networking

The	decentralization	of	computing	resources,	now	data	and	not	the	hardware,	required	more	support	for	inter-operating
system	communication	-	both	physical	support	and	application	program	support.

As	minicomputers	shrunk	in	size,	but	exploded	in	capacity,	the	powerful	computer	workstation	was	born.	Companies	such
as	Sun	Microsystems	(SUN)	and	Silicon	Graphics	(SGI)	rode	this	wave	of	success.

Local-area	networks	(primarily	Ethernet	and	token-ring)	connected	workstations,	while	wide-area	networks	connected
minicomputers.

Operating	system	developments	included	the	development	of	fast	and	efficient	network	communication	protocols,	data
encryption	(of	networks	and	file	systems),	security,	reliability,	and	consistency	of	distributed	data.

	

CITS2002	Systems	Programming,	Lecture	3,	p15,	29th	July	2024.

640K	ought	to	be	enough	for	anybody.
— Bill	Gates	(1955-),	in	1981.“

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 16 	CITS2002 	CITS2002	schedule 	

2000s	and	Beyond:	Speeds,	Capacities,	Mobility,	and	Ubiquity
The	desktop	metaphor	for	computer	interfaces	becomes	only	an	instance	of	the	wider	web	metaphor.

Hardware	prices	drop,	and	capacities	explode.	
-	Amazing	Facts	and	Figures	About	the	Evolution	of	Hard	Disk	Drives	
-	An	improved	chart	of	SSD	vs	HDD	historical	and	projected	prices

High	speed,	long	distance	communication	links	encourage	graphical	and	audio	communication	(surpassing	text).	
-	TV	and	Video	Will	Triple	Average	Home	Monthly	Internet	Usage	to	Beyond	1	TB	By	2025

As	CPU	performance	no	longer	keeps	pace	with	Moore's	Law,	and	computing	becomes	increasingly	mobile,	focus
shifts	to	battery	life	and	metrics	of	performance/Watt.	
-	Moore's	Law	and	Its	Practical	Implications	
-	Performance	per	Watt	Is	the	New	Moore's	Law	
-	How	Much	Power	Do	Computers	Consume?

	

CITS2002	Systems	Programming,	Lecture	3,	p16,	29th	July	2024.

For	years,	we	thought	that	a	million	monkeys	sitting	at	a	million
keyboards	would	produce	the	complete	works	of	Shakespeare.	Today,
thanks	to	the	Internet,	we	know	that's	not	true.
— Anon.

“

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
https://pcsite.medium.com/how-processor-speeds-have-increased-over-the-decades-2f889c212525%3EHow%20Processor%20Speeds%20Have%20Increased%20Over%20the%20Decades%3C/a%3E%0A%3Cbr%3E%0A%0A-%20%3Ca%20href=
https://www.reddit.com/r/DataHoarder/comments/17sljc1/as_requested_an_improved_chart_of_ssd_vs_hdd/
https://www.increasebroadbandspeed.co.uk/average-home-monthly-internet-usage-forecast
https://en.wikipedia.org/wiki/Moore%2527s_law
https://www.csis.org/analysis/moores-law-and-its-practical-implications
https://www.arm.com/blogs/blueprint/performance-per-watt
https://www.kompulsa.com/much-power-computers-consume/

	An Introduction to Operating Systems
	Operating System ≠ User/Computer Interface
	Operating System ≡ Resource Manager
	Operating Systems Must Be Extensible
	Traditional Operating System Services
	Traditional Operating System Services, continued
	A Whirlwind History of Operating Systems
	1945-55: Vacuum Tubes and Plugboards
	1955-65: Transistors and Batch Systems
	1955-65: Transistors and Batch Systems, continued
	1965-1980: Integrated Circuits and Multiprogramming
	1965-1980: Integrated Circuits and Multiprogramming, continued
	Early Operating System Security
	1970s: Minicomputers and Microcomputers
	1980-90s: Personal Computers and Networking
	2000s and Beyond: Speeds, Capacities, Mobility, and Ubiquity

