
CITS2002	Systems	Programming		

1 next	→ 	CITS2002 	CITS2002	schedule 	

Welcome	to	CITS2002	Systems	Programming
The	unit	explores	the	role	of	contemporary	operating	systems	and	their	support	for	high-level	programming	languages,	how
they	manage	efficient	access	to	computer	hardware,	and	how	a	computer's	resources	may	be	accessed	and	controlled	by
the	C	programming	language.

The	unit	will	be	presented	by	Dr	Chris	McDonald.

Our	UWA	Handbook	entry
Understanding	the	relationship	between	a	programming	language	and	the	contemporary	operating	systems	on
which	it	executes	is	central	to	developing	many	skills	in	Computer	Science.	This	unit	introduces	the	standard	C
programming	language,	on	which	many	other	programming	languages	and	systems	are	based,	through	a	study	of
core	operating	system	services	including	processes,	input	and	output,	memory	management,	and	file	systems.

The	C	language	is	introduced	through	discussions	on	basic	topics	like	data	types,	variables,	expressions,	control
structures,	scoping	rules,	functions	and	parameter	passing.	More	advanced	topics	like	C's	run-time	environment,
system	calls,	dynamic	memory	allocation,	and	pointers	are	presented	in	the	context	of	operating	system	services
related	to	process	execution,	memory	management	and	file	systems.	The	importance	of	process	scheduling,
memory	management	and	interprocess	communication	in	modern	operating	systems	is	discussed	in	the	context
of	operating	system	support	for	multiprogramming.	Laboratory	and	tutorial	work	place	a	strong	focus	on	the
practical	application	of	fundamental	programming	concepts,	with	examples	designed	to	compare	and	contrast
many	key	features	of	contemporary	operating	systems.	

Prerequisite:	CITS1401	Computational	Thinking	with	Python,	or	CITS2401	Computer	Analysis	and	Visualisation	
(this	unit	is	not	suitable	for	first-time	programmers).

	

CITS2002	Systems	Programming,	Lecture	1,	p1,	22nd	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 2 next	→ 	CITS2002 	CITS2002	schedule 	

Topics	to	be	covered	in	CITS2002	Systems	Programming
It's	important	to	know	where	we're	heading,	so	here's	a	list	of	topics	that	we'll	be	covering:

An	introduction	to	the	ISO-C	programming	language	
The	structure	of	a	C	program,	basic	datatypes	and	variables,	compiling	and	linking.	
We	will	focus	on	the	C11	language	standard.

An	introduction	to	Operating	Systems	
A	brief	history	of	operating	systems,	the	role	of	contemporary	operating	systems,	the	relationship	between
programming	languages,	programs,	and	operating	systems.

An	overview	of	computer	hardware	components	
The	processor	and	its	registers,	the	memory	hierarchy,	input	and	output	(I/O)	and	storage	components.

C	programs	in	greater	detail	
Arrays	and	character	strings,	user-defined	types	and	structures,	how	the	computer	hardware	represents	data,
functions,	parameter	passing	and	return	values.

Executing	and	controlling	processes	
Creating	and	terminating	processes,	a	program's	runtime	environment,	command-line	arguments,	accessing
operating	system	services	from	C.

Managing	memory	
Allocating	physical	memory	to	processes,	sharing	memory	between	multiple	processes,	allocating	and	managing
memory	in	C	programs.

Files	and	their	use	in	programs	
The	file	management	system,	file	allocation	methods,	file	and	directory	operations	and	attributes,	file	input	and	output
(I/O),	raw	and	formatted	I/O,	unbuffered	and	buffered	I/O	functions.

By	the	end	of	this	unit	you'll	have	this	knowledge	-	it	just	won't	all	be	presented	strictly	in	this	order.

Here	is	our	unit's	schedule.

	

CITS2002	Systems	Programming,	Lecture	1,	p2,	22nd	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
file:///Users/chris/Sites/cits2002/schedule.php

CITS2002	Systems	Programming		

←	prev 3 next	→ 	CITS2002 	CITS2002	schedule 	

Systems-focussed	Standards
In	this	unit	we'll	introduce	a	number	of	standards	relevant	to	systems	programming.	Formal	standards	are	used	to	define
nearly	all	aspects	of	computing,	notably	data-representations,	file-formats,	programming-languages,	networking	protocols,
web	(communication)	interfaces,	and	encryption	and	authentication.

Formal	standards	in	computing	are	often	very	large.	For	example,	the	formal	standard	for	the	C11	programming	language
(used	in	this	unit)	is	660	pages.	You	are	not	expected	to	understand	these	standards	in	depth	(they	will	not	be	examined),
but	as	part	of	professional	development	you're	encouraged	to	skim	them	for	an	appreciation	of	their	role	in	computing.

Standards	discussed	in	this	unit

C11	-	the	ISO/IEC	9899:2011	programming	language	standard	standardizes	a	set	of	features	supported	by	common
contemporary	compilers,	such	as	gcc	and	clang.	In	this	unit	we	focus	on	C11,	despite	it	being	superseded	by	C17
(standard	ISO/IEC	9899:2018),	because	C11	is	widely	supported	in	the	computing	environments	you'll	use	(and	C17
is	not	yet	widely	supported).

POSIX	-	the	Portable	Operating	System	Interface	is	a	family	of	standards	specified	by	the	IEEE	Computer	Society	for
maintaining	compatibility	between	operating	systems.	POSIX	defines	the	both	system-	and	user-level	application
programming	interfaces	(API),	along	with	command	line	shells	and	utility	interfaces	[Wikipedia].

While	POSIX	is	often	associated	with	open-source	systems	(such	as	Linux),	the	first	POSIX-certified	system	was
Microsoft's	Windows-NT	v3.5	in	1999!

	

CITS2002	Systems	Programming,	Lecture	1,	p3,	22nd	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
https://en.wikipedia.org/wiki/POSIX

CITS2002	Systems	Programming		

←	prev 4 next	→ 	CITS2002 	CITS2002	schedule 	

Why	teach	C?
Since	its	beginnings	in	early	1973,	the	C	programming	language	has	evolved	to	become	one	of	the	world's	most	popular,
and	widely	deployed	programming	languages.	The	language	has	undergone	extensive	formal	standardization	to	produce
the	ANSI-C	standard	in	1989,	the	ISO-C99	standard	in	1999,	ISO-C11	(revision)	in	Dec	2011,	and	ISO-C18	in	June	2018
(which	introduces	no	new	language	features,	only	technical	corrections	and	clarifications	to	defects	in	C11).

C	is	the	programming	language	of	choice	for	most	systems-level,	engineering,
and	scientific	programming:

most	of	the	world's	popular	operating	systems,	Linux,	Windows	and
macOS,	their	interfaces	and	file-systems,	are	written	in	C,
the	infrastructure	of	the	Internet,	including	most	of	its	networking
protocols,	web	servers,	and	email	systems,	are	written	in	C,
software	libraries	providing	graphical	interfaces	and	tools,	and	efficient
numerical,	statistical,	encryption,	and	compression	algorithms,	are
written	in	C,
the	software	for	most	embedded	devices,	including	those	in	cars,
aircraft,	robots,	smart	appliances,	sensors,	mobile	phones,	and	game
consoles,	is	written	in	C,
the	software	on	the	Mars	Phoenix	Lander	was	written	in	C,
much	of	the	safety-critical	software	on	the	F-35	joint	strike	fighter,	is
written	in	C,	but
C	was	not	used	on	the	Apollo-11	mission!

Is	C	still	relevant?	[refs:	Tiobe	index,	Please	stop	citing	TIOBE].	
(The	Tiobe	survey	is	based	on	search-engine	queries	-	is	not	about	the	best	programming	language	or	the	language	in	which	most	lines	of	code 	have
been	written).	

Of	note,	in	July	2023,	the	Tiobe	survey	rates	C,	Python,	and	Java	as	almost	identical	in	'popularity'	(whatever	that	means).	
Of	course,	popularity	is	a	poor	measure	of	quality	-	otherwise,	McDonald's	Restaurants	would	receive	Michelin	stars.

So,	we'll	not	focus	on	popularity,	but	on	the	relevance	and	appropriate	uses	of	C.

Other	interesting	surveys:

Stackoverflow's	Developer	Survey	Results	May	2023.
Jetbrains'	The	State	of	Developer	Ecosystem	in	2023
HackerRank's	2024	HackerRank	Developer	Skills	Report

Other	Systems	Programming	Languages?
A	(limited)	number	other	programing	languages	are	used	for	contemporary	systems	programming,	notably	Go,	Nim,	Rust,
Swift,	and	Zig.	All	have	been	strongly	influenced	by	C,	and	attempt	to	address	shortcomings	of	C.

In	particular,	Rust	was	officially	added	to	the	Linux	kernel	in	December	2022.

	

CITS2002	Systems	Programming,	Lecture	1,	p4,	22nd	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
file:///Users/chris/Sites/cits2002/lectures/lecture01/images/f35-languages.png
file:///Users/chris/Sites/cits2002/lectures/lecture01/images/tiobe-jul24.png
https://www.tiobe.com/tiobe-index/
https://blog.nindalf.com/posts/stop-citing-tiobe/
https://survey.stackoverflow.co/2023/
https://www.jetbrains.com/lp/devecosystem-2023/
https://www.hackerrank.com/research/developer-skills/2024
https://ubunlog.com/en/linux-6-1-rc1-is-released-as-the-first-kernel-version-to-use-rust/

CITS2002	Systems	Programming		

←	prev 5 next	→ 	CITS2002 	CITS2002	schedule 	

So	what	is	C?

In	one	breath,	C	is	often	described	as	a	good	general	purpose	language,	an	excellent	systems	programming	language,	and
just	a	glorified	assembly	language.	So	how	can	it	be	all	three?

C	can	be	correctly	described	as	a	general	purpose	programming	language	-	
a	description	also	given	to	Java,	Python,	Visual-Basic,	C++,	and	C#.

C	is	a	procedural	programming	language,	not	an	object-oriented	language	like	Java,	(parts	of)	Python,	Objective-C,	or	C#.

C	is	more	mow(the_lawn);		than		lawn.mow_thyself();

C	programs	can	be	"good"	programs,	if	they	are:

well	designed,
clearly	written,
written	for	portability,
well	documented,
use	high	level	programming	practices,	and
well	tested.

Of	course,	the	above	properties	are	independent	of	C,	and	are	offered	by	many	high	level	languages.

C	has	programming	features	provided	by	most	procedural	programming	languages	-	strongly	typed	variables,
constants,	standard	(or	base)	datatypes,	enumerated	types,	user-defined	types,	aggregate	structures,	standard
control	flow,	recursion,	and	program	modularization.
C	does	not	offer	tuples	or	sets,	Java's	concept	of	classes	or	objects,	nested	functions,	subrange	types,	and	has	only
recently	added	a	Boolean	datatype.
C	does	have,	however,	separate	compilation,	conditional	compilation,	bitwise	operators,	pointer	arithmetic,	and
language	independent	input	and	output.

An	important	note:	C	and	C++	are	very	different	languages,	with	some	common	syntax	and	semantics.	Webpages,	blogs,
career-positions,	and	even	textbooks	that	promote	"C/C++"	as	a	single	language,	do	not	know	what	they	are	talking	about.

	

CITS2002	Systems	Programming,	Lecture	1,	p5,	22nd	July	2024.

A	programming	language	that	doesn't	affect	the	way	you	think	about
programming	isn't	worth	knowing.
— Alan	Perlis,	1st	Turing	Award	winner

“

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 6 next	→ 	CITS2002 	CITS2002	schedule 	

A	Systems	Programming	Language
C	is	frequently,	and	correctly,	described	as	an	excellent	systems	programming	language.

C	also	provides	an	excellent	operating	system	interface	through	its	well	defined,	hardware	and	operating	system
independent,	standard	library.

The	C	language	began	its	development	in	1972,	as	a	programming	language
in	which	to	re-write	significant	portions	on	the	Unix	operating	system:

Unix	was	first	written	in	assembly	languages	for	PDP-7	and	PDP-11
computers.

In	1973	Dennis	Ritchie	was	working	on	a	programming	language	for
operating	system	development.	Basing	his	ideas	upon	BCPL,	he
developed	B	and	finally	created	one	called	C.	
(Yes,	there	is	a	language	named	'D',	but	it's	not	a	descendant	of	C)

By	the	end	of	1973,	the	UNIX	kernel	was	85%	written	in	C	which
enabled	it	to	be	ported	to	other	machines	for	which	a	C	compiler	could
be	fashioned.

This	was	a	great	step	because	it	no	longer	tied	the	operating	system	to
the	PDP-7	as	it	would	have	been	if	it	remained	in	assembly	language.	In
1976	Dennis	Ritchie	and	Stephen	Johnston	ported	Unix	to	an	Interdata
8/32	machine.	Since	then,	Unix	and	Linux	have	been	ported	to	over	260
different	processor	architectures.

Today,	well	in	excess	of	95%	of	the	Unix,	Linux,	macOS,	and	Windows	operating	system	kernels	and	their	standard	library
routines	are	all	written	in	the	C	programming	language	-	it's	extremely	difficult	to	find	an	operating	system	not	written	in
either	C	or	its	descendants	C++	or	Objective-C.

	

CITS2002	Systems	Programming,	Lecture	1,	p6,	22nd	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 7 next	→ 	CITS2002 	CITS2002	schedule 	

Portability	on	different	architectures
C	compilers	have	been	both	developed	and	ported	to	a	large	number	and	type	of	computer	architectures:

from	4-bit	and	8-bit	microcontrollers,
through	traditional	16-,	32-,	and	64-bit	virtual	memory	architectures	in	most	PCs	and	workstations,
to	larger	64-	and	128-bit	supercomputers.

Compilers	have	been	developed	for:

traditional	large	instruction	set	architectures,	such	as	Intel	x86,	AMD,	ARM,	Motorola	680x0,	Sun	SPARCs,	and	DEC-Alpha,
newer	reduced	instruction	set	architectures	(RISC),	such	as	RISC-V,	SGI	MIPS,	IBM/Motorola	PowerPC,
smartphones,	home	theatre	equipment,	routers	and	access-points,	and
parallel	and	pipelined	architectures.

	

CITS2002	Systems	Programming,	Lecture	1,	p7,	22nd	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
https://www.hpcwire.com/off-the-wire/australias-setonix-named-4th-greenest-supercomputer-in-the-world/

CITS2002	Systems	Programming		

←	prev 8 next	→ 	CITS2002 	CITS2002	schedule 	

All	it	requires	is	a	ported	C	compiler
Once	a	C	compiler	has	been	developed	for	a	new	architecture,	the	terabytes	of	C	programs	and	libraries	available	on	other
C-based	platforms	can	also	be	ported	to	the	new	architecture.

What	about	assembly	languages?
It	is	often	quoted	that	a	compiled	C	program	will	run	only	1-2%	slower	than	the	same	program	hand-coded	in	the	native
assembly	language	for	the	machine.

But	the	obvious	advantage	of	having	the	program	coded	in	a	readable,	high	level	language,	provides	the	overwhelming
advantages	of	maintainability	and	portability.

Very	little	of	an	operating	system,	such	as	Windows,	macOS,	or	Linux,	is	written	in	an	assembly	language	-	in	most	cases
the	majority	is	written	in	C.

Even	an	operating	system's	device	drivers,	often	considered	the	most	time-critical	code	in	an	operating	system	kernel,
today	contain	assembly	language	numbered	in	only	the	hundreds	of	lines.

	

CITS2002	Systems	Programming,	Lecture	1,	p8,	22nd	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 9 next	→ 	CITS2002 	CITS2002	schedule 	

The	unreadability	of	C	programs
C	is	described	as	nothing	more	than	a	glorified	assembly	language,	meaning	that	C	programs	can	be	written	in	such	an
unreadable	fashion	that	they	look	like	your	monitor	is	set	at	the	wrong	speed.

(in	fact	there's	a	humorous	contest	held	each	year,	The	International	Obfuscated	C	Code	Contest	to	design	fully	working
but	indecipherable	code,	
and	the	(defunct)	Underhanded	C	Contest	whose	goal	is	to	write	code	that	is	as	readable,	clear,	innocent	and
straightforward	as	possible,	and	yet	it	must	fail	to	perform	at	its	apparent	function).

Perhaps	C's	biggest	problem	is	that	the	language	was	designed	by	programmers	who,	folklore	says,	were	not	very
proficient	typists.

C	makes	extensive	use	of	punctuation	characters	in	the	syntax	of	its	operators	and	control	flow.	In	fact,	only	the
punctuation	characters

@		`		and		$

are	not	used	in	C's	syntax!	(and	DEC-C	once	used	the	$	character,	and	Objective-C	now	uses	the	@).

It	is	not	surprising,	then,	that	if	C	programs	are	not	formatted	both	consistently	and	with	sufficient	white	space	between
operators,	and	if	very	short	identifier	names	are	used,	a	C	program	will	be	very	difficult	to	read.

To	partially	address	these	problems,	a	number	of	text-editors,	integrated	development	environments	(IDEs),	and
beautification	programs	(such	as	indent)	can	automatically	reformat	our	C	code	according	to	consistent	specifications.

	

CITS2002	Systems	Programming,	Lecture	1,	p9,	22nd	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
https://www.ioccc.org/
http://underhanded-c.org

CITS2002	Systems	Programming		

←	prev 10 next	→ 	CITS2002 	CITS2002	schedule 	

Criticisms	of	C's	execution	model

C	is	criticized	for	being	too	forgiving	in	its	type-checking	at	compile	time.

It	is	possible	to	cast	an	instance	of	some	types	into	other	types,	even	if	the	two	instances	have	considerably	different
types.

A	pointer	to	an	instance	of	one	type	may	be	coerced	into	a	pointer	to	an	instance	of	another	type,	thereby	permitting
the	item's	contents	to	be	interpreted	differently.

Badly	written	C	programs	make	incorrect	assumptions	about	the	size	of	items	they	are	managing.	Integers	of	8-,	16-,
and	32-bits	can	hold	different	ranges	of	values.	Poor	choices,	or	underspecification	can	easily	lead	to	errors.

C	provides	no	runtime	protection	against	arithmetic	errors.

There	is	no	exception	handling	mechanism,	and	errors	such	as	division-by-zero	and	arithmetic	overflow	and
underflow,	are	not	caught	and	reported	at	run-time.

C	offers	no	runtime	checking	of	popular	and	powerful	constructs	like	pointer	variables	and	array	indices.

Subject	to	constraints	imposed	by	the	operating	system's	memory	management	routines,	a	pointer	may	point	almost
anywhere	in	a	process'	address	space	and	seemingly	random	addresses	may	be	read	or	written	to.

Although	all	array	indices	in	C	begin	at	0,	it	is	possible	to	access	an	array's	elements	with	negative	indices	or	indices
beyond	the	declared	end	of	the	array.

There	are	occasions	when	each	of	these	operations	make	sense,	but	they	are	rare.

C	does	not	hold	the	hand	of	lazy	programmers.

We	avoid	all	of	these	potential	problems	by	learning	the	language	well,	and	employing	safe	programming	practices.

	

CITS2002	Systems	Programming,	Lecture	1,	p10,	22nd	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 11 next	→ 	CITS2002 	CITS2002	schedule 	

What	is	the	best	programming	language?
The	question,	even	arguments,	of	whether	Python,	C,	Java,	Visual-Basic,	C++,	C#	is	the	best	general	purpose
programming	language	is	pointless.

The	important	question	is:

"which	language	is	most	suited	for	the	task	at	hand?"

This	unit	will	answer	the	questions:

"when	is	C	the	best	language	to	use?"	and
"how	do	we	best	use	C's	features	for	systems	programming?"

Through	a	sequence	of	units	offered	by	Computer	Science	&	Software	Engineering	you	can	become	proficient	in	a	wide
variety	of	programming	languages	-	procedural,	object-oriented,	functional,	logic,	set-based,	and	formal	-	and	know	the
most	appropriate	one	to	select	for	any	project.

	

CITS2002	Systems	Programming,	Lecture	1,	p11,	22nd	July	2024.

C	and	C++	are	only	the	foundation	because	they	happened	to	become
popular	due	to	a	bunch	of	miscellaneous	factors,	not	because	they	are
inherently	great	inventions	in	themselves.	Also,	they	(and	their	standard
libraries)	evolved	over	time	to	their	current	state.

It's	like	saying	English	and	Spanish	are	the	most	important	languages
because	they	are	fundamentally	the	"best-invented"	ones,	not	because	of
the	accidents	of	fate	that	were	colonial	expansion,	WWII,	and	the	Internet.
— Anon

“

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 12 next	→ 	CITS2002 	CITS2002	schedule 	

The	Standardization	of	C	-	K&R	C

Despite	C's	long	history,	being	first	designed	in	the	early	1970s,	it	underwent	considerably	little
change	until	the	late	1980s.

This	is	a	very	lengthy	period	of	time	when	talking	about	a	programming	language's	evolution.

The	original	C	language	was	mostly	designed	by	Dennis	Ritchie	and	then	described	by	Brian
Kernighan	and	Dennis	Ritchie	in	their	imaginatively	titled	book	The	C	Programming	Language.

The	language	described	in	this	seminal	book,	described	as	the	"K&R"	book,	is	now	described
as	"K&R"	or	"old"	C.

	

228	pages.

	

CITS2002	Systems	Programming,	Lecture	1,	p12,	22nd	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 13 next	→ 	CITS2002 	CITS2002	schedule 	

The	Standardization	of	C	-	ANSI-C	(K&R-2)

In	the	late	1980s,	a	number	of	standards	forming	bodies,	and	in	particular	the	American
National	Standards	Association	X3J11	Committee,	commenced	work	on	rigorously	defining
both	the	C	language	and	the	commonly	provided	standard	C	library	routines.	The	results	of
their	lengthy	meetings	are	termed	the	ANSI-X3J11	standard,	or	informally	as	ANSI-C,	C89,	or
C90.

The	formal	definition	of	ANSI-C	introduced	surprisingly	few	modifications	to	the	old	"K&R"
language	and	only	a	few	additions.

Most	of	the	additions	were	the	result	of	similar	enhancements	that	were	typically	provided	by
different	vendors	of	C	compilers,	and	these	had	generally	been	considered	as	essential
extensions	to	old	C.	The	ANSI-C	language	is	extremely	similar	to	old	C.	The	committee	only
introduced	a	new	base	datatype,	modified	the	syntax	of	function	prototypes,	added
functionality	to	the	preprocessor,	and	formalized	the	addition	of	constructs	such	as	constants
and	enumerated	types.

	

272	pages.

	

CITS2002	Systems	Programming,	Lecture	1,	p13,	22nd	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 14 next	→ 	CITS2002 	CITS2002	schedule 	

The	Standardization	of	C	-	ANSI/ISO-C99	and	ISO/IEC	9899:2011	(C11)

A	new	revision	of	the	C	language,	named	ANSI/ISO-C99	(known	as	C99),
was	completed	in	1999.

Many	features	were	"cleaned	up",	including	the	addition	of	Boolean	and
complex	datatypes,	single	line	comments,	and	variable	length	arrays,	and
the	removal	of	many	unsafe	features,	and	ill-defined	constructs.

753	pages.

A	revision	of	C99,	ISO/IEC	9899:2011	(known	as	C11),	was	completed	in
December	2011.

In	this	unit	we	will	focus	exclusively	on	C11,	
and	only	mention	other	versions	of	C	when	the	differences	are	significant.

If	the	C	compiler	on	your	computer	system	does	not	support	C11,	you	will	be	able	to	undertake	most	exercises	using	C99	-
but	are	strongly	encouraged	to	upgrade	your	C	compiler

(a	topic	discussed	in	our	first	workshop).

	

CITS2002	Systems	Programming,	Lecture	1,	p14,	22nd	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 15 next	→ 	CITS2002 	CITS2002	schedule 	

What	C	Standardization	Provides
These	quite	formal	standards	specify	the	form	and	establishes	the	interpretation	of	programs	written	in	the	C	programming
language.	They	specify:

the	representation	of	C	programs;
the	syntax	and	constraints	of	the	C	language;
the	semantic	rules	for	interpreting	C	programs;
the	representation	of	input	data	to	be	processed	by	C	programs;
the	representation	of	output	data	produced	by	C	programs;
the	restrictions	and	limits	imposed	by	a	conforming	implementation	of	C.

They	do	not	specify:

the	mechanism	by	which	C	programs	are	transformed	for	use	by	a	data-processing	system;
the	mechanism	by	which	C	programs	are	invoked	for	use	by	a	data-processing	system;
the	mechanism	by	which	input	data	are	transformed	for	use	by	a	C	program;
the	mechanism	by	which	output	data	are	transformed	after	being	produced	by	a	C	program;
the	size	or	complexity	of	a	program	and	its	data	that	will	exceed	the	capacity	of	any	specific	data-processing	system
or	the	capacity	of	a	particular	processor;
all	minimal	requirements	of	a	data-processing	system	that	is	capable	of	supporting	a	conforming	implementation.

	

CITS2002	Systems	Programming,	Lecture	1,	p15,	22nd	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 16 next	→ 	CITS2002 	CITS2002	schedule 	

What's	(deliberately)	missing	from	the	C	language?
At	first	glance,	the	C	language	appears	to	be	missing	some	commonly	required	features	that	other	languages,	such	as
Java,	provide	in	their	standards.

For	example,	C	does	not	provide	features	for	graphics,	networking,	cryptography,	or	multimedia.

Instead,	C	permits,	enables,	and	encourages	additional	3rd-party	libraries	(both	open-source	and	commercial)	to	provide
these	facilities.	The	reason	for	these	"omissions"	is	that	C	rigorously	defines	what	it	does	provide,	and	rigorously	defines
how	C	must	interact	with	external	libraries.

Here	are	some	well-respected	3rd-party	libraries,	frequently	employed	in	large	C	programs:

Application	domain (a	sample	of)	3rd-party	libraries
operating	system	services	
(files,	directories,	processes,	inter-process
communication)

OS-specific	libraries,	e.g.	glibc,	System32,	Cocoa

web-based	programming libcgi,	libxml,	libcurl

data	structures	and	algorithms the	generic	data	structures	library	(GDSL)

GUI	and	graphics	development OpenGL,	GTK,	Qt,	wxWidgets,	UIKit,	Win32,
Tcl/Tk

image	processing	(GIFs,	JPGs,	etc) GD,	libjpeg,	libpng

networking Berkeley	sockets,	AT&T's	TLI

security,	cryptography openssl,	libmp

scientific	computing NAG,	Blas3,	GNU	scientific	library	(gsl)

concurrency,	parallel	and	GPU	programming OpenMP,	CUDA,	OpenCL,	openLinda	
(thread	support	is	defined	in	C11,	but	not	in	C99)

	

CITS2002	Systems	Programming,	Lecture	1,	p16,	22nd	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 17 	CITS2002 	CITS2002	schedule 	

Lecture	1	Summary

Understanding	the	relationship	between	a	programming	language	and	contemporary	operating	systems	is	central	to
developing	many	skills	in	Computer	Science.

This	unit	introduces	the	C11	programming	language,	and	fundamental	operating	system	concepts	such	as	processes,
memory	management,	file-systems,	and	operating	system	services.

Following	standards	is	critical	to	developing	robust,	portable,	and	easy	to	maintain	systems	programs.	This	unit
makes	constant	reference	to	the	C11	and	POSIX	standards.

Debates	over	which	is	the	best	programming	language	are	pointless.	Of	greatest	importance	is	choosing	and
understanding	a	programming	language	well-suited	for	the	systems	or	application	domain.

Despite	its	age,	C	is	very	deliberately	introduced	as	a	vehicle	to	explain	systems-programming,	because	of	its	history
and	influence	on	other	languages,	simplicity,	continued	widespread	use,	standardisation,	and	portability.

Similarly,	POSIX	is	introduced	because	of	its	widespread	use,	consistency,	standardisation,	and	portability.

	

	

CITS2002	Systems	Programming,	Lecture	1,	p17,	22nd	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

	Welcome to CITS2002 Systems Programming
	Our UWA Handbook entry
	Topics to be covered in CITS2002 Systems Programming
	Systems-focussed Standards
	Standards discussed in this unit
	Why teach C?
	Other Systems Programming Languages?
	So what is C?
	A Systems Programming Language
	Portability on different architectures
	All it requires is a ported C compiler
	What about assembly languages?
	The unreadability of C programs
	Criticisms of C's execution model
	What is the best programming language?
	The Standardization of C - K&R C
	The Standardization of C - ANSI-C (K&R-2)
	The Standardization of C - ANSI/ISO-C99 and ISO/IEC 9899:2011 (C11)
	What C Standardization Provides
	What's (deliberately) missing from the C language?
	Lecture 1 Summary

