
Databases - Triggers and Views

Gordon Royle

School of Mathematics & Statistics
University of Western Australia

Gordon Royle (UWA) Triggers 1 / 38

Triggers

Triggers are small procedural programs – stored routines – written in SQL,
that are run automatically when specified events (such as rows being added,
deleted or updated) occur on a particular table.

Triggers can be used:

to perform stronger, or more complex and adaptive, integrity checks than
are possible with the inbuilt mechanisms,

to automatically perform routine operations, such as logging, tallying, or
notification that should occur as a consequence of the original operation,

to add additional functionality and/or overcome some of the limitations
in any particular implementation of SQL.

There is a wide variation between the SQL standard and particular
implementations, such as MySQL.

Gordon Royle (UWA) Triggers 2 / 38

Basic syntax

In MySQL, the basic syntax is

CREATE TRIGGER name time event
ON table
FOR EACH ROW
BEGIN
...
END

Here, name, time, event and table are to be replaced with appropriate
keywords or values.

Gordon Royle (UWA) Triggers 3 / 38

What options?

Clearly name and table are replaced with an appropriate name (for the
trigger) and the table to which the trigger is attached, while the other two
values can take the following values:

time
Either BEFORE or AFTER

event
Either INSERT, UPDATE or DELETE

(MySQL does not implement INSTEAD OF which is in the SQL standard,
but we can simulate this behaviour if necessary.)

Gordon Royle (UWA) Triggers 4 / 38

Reading the docs

Gordon Royle (UWA) Triggers 5 / 38

What this means

SQL watches out for the specified event (INSERT, UPDATE or DELETE) on
the specified table, and then runs the trigger either BEFORE or AFTER the
action.

The trigger can do pretty much anything — prevent the event from happening,
modify the event, record the event in another table, ensure that the action is
legitimate — to ensure that everything in the database is in a consistent state.

Gordon Royle (UWA) Triggers 6 / 38

Row-level only

The SQL standard specifies two “levels” of trigger

Statement-level trigger
Trigger runs once for each relevant type of statement, no matter how
many rows it affects.

Row-level trigger
Trigger runs once for each affected row, maybe thousands of times if
there are thousands of rows.

MySQL documentation shows FOR EACH ROW as compulsory, because
MySQL only implements row-level triggers and not statement-level triggers.

Gordon Royle (UWA) Triggers 7 / 38

Access to rows

In order to take effective action, the trigger needs to know

The state of the row before the (proposed) event

The state of the row after the (proposed) event,

These values are provided to the trigger as two tuples, called NEW and OLD.

Gordon Royle (UWA) Triggers 8 / 38

NEW and OLD

A tuple called NEW is available for any INSERT or UPDATE trigger
This tuple contains the new values that the row will contain after the
insertion or update.

A tuple called OLD is available for any UPDATE or DELETE trigger
This tuple contains the old values that the row did contain after the
update or deletion.

For an UPDATE statement, OLD contains the row before the (proposed)
update, and NEW contains the row after the (proposed) update.
For an INSERT statement, there is only an NEW row, and for a DELETE
statement, there is only an OLD row.

Gordon Royle (UWA) Triggers 9 / 38

Temporarily change delimiters

To define triggers, we need to do the same “delimiter gymnastics” as when
defining all stored routines.

DELIMITER ++
CREATE TRIGGER name time event
ON table
FOR EACH ROW
BEGIN

A whole bunch of MySQL statements
each terminated with the usual semicolon

END++
DELIMITER ;

The first line temporarily changes the delimiter to ++, then the entire
procedure is entered, and finally the delimiter is changed back again.

Gordon Royle (UWA) Triggers 10 / 38

A log file

Suppose we have a table representing bank accounts

CREATE TABLE BankAccount(
id INT PRIMARY KEY,
name VARCHAR(64),
balance REAL);

Now we’ll make a table that will log banking transactions

CREATE TABLE BankAccountLog(
id INT,
time DATETIME,
event ENUM(’D’, ’W’),
preBalance REAL,
postBalance REAL);

Gordon Royle (UWA) Triggers 11 / 38

Adding triggers

DELIMITER ++

CREATE TRIGGER banklog
AFTER UPDATE
ON BankAccount
FOR EACH ROW
BEGIN
INSERT INTO BankAccountLog
VALUES(NEW.id, NOW(), ’D’, OLD.balance, NEW.balance);

END++

DELIMITER ;

Notice the use of the built-in function NOW() to populate the attribute that has
type DATETIME.

Gordon Royle (UWA) Triggers 12 / 38

Adding logic

CREATE TRIGGER banklog
AFTER UPDATE
ON BankAccount
FOR EACH ROW
BEGIN
IF NEW.balance > OLD.balance THEN
INSERT INTO BankAccountLog
VALUES(NEW.id, NOW(), ’D’ ,OLD.balance,NEW.balance);

ELSE
INSERT INTO BankAccountLog
VALUES(NEW.id, NOW(), ’W’ ,OLD.balance,NEW.balance);

END IF;
END

Gordon Royle (UWA) Triggers 13 / 38

Adding variables

CREATE TRIGGER banklog
AFTER UPDATE
ON BankAccount
FOR EACH ROW
BEGIN
DECLARE which CHAR;

IF NEW.balance > OLD.balance THEN
SET which = ’D’;

ELSE
SET which = ’W’;

END IF;

INSERT INTO BankAccountLog
VALUES(NEW.id, NOW(),which,OLD.balance,NEW.balance);

END

Gordon Royle (UWA) Triggers 14 / 38

Declare the variable

DECLARE which CHAR;

This statement declares a variable, whose name is which and that is of type
CHAR.

The variable can be assigned a value, and then used whenever a CHAR is
expected.

Gordon Royle (UWA) Triggers 15 / 38

Assign a value to the variable

IF NEW.balance > OLD.balance THEN
SET which = ’D’;

ELSE
SET which = ’W’;

END IF;

This statement compares the new balance with the old balance, and assigns
either ’D’ or ’W’ to the variable which depending on whether the change of
balance constitutes a deposit or a withdrawal.

Gordon Royle (UWA) Triggers 16 / 38

Use the variable

INSERT INTO BankAccountLog
VALUES(NEW.id, NOW(),which,OLD.balance,NEW.balance);

Finally the variable is used in the INSERT statement into the log file.

Gordon Royle (UWA) Triggers 17 / 38

Checks

Checking

The SQL standard specifies a type of data integrity constraint called a CHECK
that is specified at the CREATE TABLE stage.

CREATE TABLE BankAccount (
accountNumber INT,
balance REAL CHECK (balance > -1000));

This will simply prevent any operation that would result in the balance
dropping below −999 (perhaps this is the overdraft limit for this account).

However, this is not implemented in MySQL, which kindly says:

Gordon Royle (UWA) Triggers 18 / 38

Checks

As a trigger

CREATE TRIGGER checkBalance
BEFORE UPDATE
ON BankAccount
FOR EACH ROW
BEGIN
IF NEW.balance <= -1000 THEN
SIGNAL SQLSTATE ’45000’
SET MESSAGE_TEXT = ’Balance too low’;

END IF;
END

Gordon Royle (UWA) Triggers 19 / 38

Checks

How it works

All of this trigger is familiar except the

SIGNAL SQLSTATE ’45000’
SET MESSAGE_TEXT = ’Balance too low’;

The SIGNAL mechanism is used to deal with errors, halting execution and
reporting a value and/or message back to the client responsible for the
statement that generated the signal.

The value 45000 is a standard value that represents a “user-defined
exception”.

mysql> UPDATE BankAccount SET balance = -1500;
ERROR 1644 (45000): Balance too low

Gordon Royle (UWA) Triggers 20 / 38

Checks

Question

Suppose that the BankAccount table has another column

CREATE TABLE BankAccount2(
id INT PRIMARY KEY,
name VARCHAR(64),
balance REAL,
minimumBalance REAL);

The new column should store the overall minimum that the balance has ever
attained during a sequence of operations, where every operation has the
following form:

UPDATE BankAccount2
SET balance = balance + ...
WHERE id = ...

Write a trigger to accomplish this.

Gordon Royle (UWA) Triggers 21 / 38

Checks

Hints

An update trigger cannot perform an UPDATE command on the same
table

The values of OLD are read-only, but the values of NEW can be both read
and written, but only in a BEFORE trigger.

Why are these two restrictions necessary?

Gordon Royle (UWA) Triggers 22 / 38

Checks

Views

A view is a named “virtual table” defined using a stored SQL SELECT query.

The schema of the view is determined by the types of the selected columns,
and the contents of the view at any given moment are determined by running
the SQL SELECT query.

For querying purposes, a view acts as though it is a regular table, although
“under the hood”, any query to the view is translated into an equivalent query
on the underlying tables.

Gordon Royle (UWA) Triggers 23 / 38

Checks

Jennifer on views

See

https://www.youtube.com/watch?v=UcS2GSK3jaY

https://www.youtube.com/watch?v=jMgRah-2dr8

for Jennifer Widom’s recordings on the subject of views.

Gordon Royle (UWA) Triggers 24 / 38

Checks

Why views?

The structure of a database is determined by a number of different factors:

The logical design of the application

Schema normalization and redundancy removal

Security and access control

Efficiency

This can lead to a structure that is not necessarily easy to use, or not
necessarily easy for an “end-user” to use.

Gordon Royle (UWA) Triggers 25 / 38

Checks

Why views 2

Views allow the DBA to define customised tables for each type of user —
except that they are not really tables, but rather “virtual objects” that behave
just like tables.

This additional layer of abstraction allows everyone to be happy - the user has
easy-to-use tables that contain just the information they want (including
redundant information), while the DBA has an optimised database that is easy
to maintain.

As with all abstraction layers, an additional benefit is that the underlying
implementation can be changed, and by simply changing the views, the
end-users need not change any of their queries.

Gordon Royle (UWA) Triggers 26 / 38

Checks

Example

Consider the following schema:

Student (id INT PRIMARY KEY, name VARCHAR(64))
Unit (code CHAR(8) PRIMARY KEY, uname VARCHAR(128))

CREATE TABLE Enrolled (
sid INT,
ucode VARCHAR(8),
mark INT,
FOREIGN KEY (sid)
REFERENCES Student(id) ON UPDATE CASCADE,

FOREIGN KEY (ucode)
REFERENCES Unit(code) ON UPDATE CASCADE);

Gordon Royle (UWA) Triggers 27 / 38

Checks

Create a view

CREATE VIEW AcademicRecord AS
SELECT id, name, COUNT(mark), AVG(mark) AS avg FROM
Student JOIN Enrolled ON Student.id = Enrolled.sid
GROUP BY id;

This creates a “summary line” for each student, just listing their name along
with the number of units they have taken and the average mark they attained.

Gordon Royle (UWA) Triggers 28 / 38

Checks

Using the view

mysql> select * from student;
+-----+-------+
| id | name |
+-----+-------+
123	Amy
456	Bill
567	Chloe
899	Dan
+-----+-------+	
mysql> select * from enrolled;	
+------+----------+------+	
sid	ucode
+------+----------+------+	
123	CITS1402
456	CITS1402
899	CITS1402
123	CITS2211
+------+----------+------+

Gordon Royle (UWA) Triggers 29 / 38

Checks

Using the view

mysql> select * from AcademicRecord;
+-----+------+-------------+-----------+
| id | name | COUNT(mark) | avg |
+-----+------+-------------+-----------+
123	Amy	2	85.0000
456	Bill	1	25.0000
899	Dan	1	65.0000
+-----+------+-------------+-----------+
3 rows in set (0.00 sec)

Gordon Royle (UWA) Triggers 30 / 38

Checks

Another example

From Classic Models the fact that an order comprises several rows from
orderdetails makes it awkward to deal with orders and their prices.
We can avoid this problem by defining a view

CREATE view pricedOrder AS
SELECT ordernumber,

SUM(priceeach * quantityordered) AS totalprice
FROM orderdetails
GROUP BY ordernumber;

Gordon Royle (UWA) Triggers 31 / 38

Checks

A new table

SELECT * from pricedOrder;
+-------------+------------+
| orderNumber | totalPrice |
+-------------+------------+
| 10100 | 10223.83 |
| 10101 | 10549.01 |
| 10102 | 5494.78

It looks and behaves just like a table with the same name — except that
behind the scenes, MySQL is quickly rewriting every query into an equivalent
query on the original tables.

Gordon Royle (UWA) Triggers 32 / 38

Checks

A new table

A view can do pretty much anything a normal table can

SELECT orderDate,
orderNumber,
totalPrice

FROM orders
NATURAL JOIN pricedOrder;

+------------+-------------+------------+
| orderDate | orderNumber | totalPrice |
+------------+-------------+------------+
2003-01-06	10100	10223.83
2003-01-09	10101	10549.01
2003-01-10	10102	5494.78

It looks and behaves just like a table with the same name — except that
behind the scenes, MySQL is quickly rewriting every query into an equivalent
query on the original tables.

Gordon Royle (UWA) Triggers 33 / 38

Checks

More view terminology

There are two additional terms important in the discussion of views

Updatable views
A view is updatable if you can use it to alter the underlying tables

Materialized views
A view is materialized if the results of the query it represents have
actually been stored in the database

Gordon Royle (UWA) Triggers 34 / 38

Checks

Updatable views

A view is updatable if you can use DELECT, INSERT and UPDATE
statements on the view and have the underlying tables altered in such a way
that the view is changed in a manner consistent with the operation.

For a simple example, consider

CREATE VIEW marksOnly AS
SELECT sid, mark
FROM Enrolled;

This just pulls two fields out of the Enrolled table.

Gordon Royle (UWA) Triggers 35 / 38

Checks

What should this statement do?

DELETE FROM marksOnly WHERE sid = 123;

The only way to change the underlying tables so that the view no longer
“sees” the student 123, is to delete those rows from Enrolled and so this is
what happens.

Gordon Royle (UWA) Triggers 36 / 38

Checks

What should this statement do?

DELETE FROM marksOnly WHERE sid = 123;

The only way to change the underlying tables so that the view no longer
“sees” the student 123, is to delete those rows from Enrolled and so this is
what happens.

Gordon Royle (UWA) Triggers 36 / 38

Checks

Not updatable

On the other hand, the statement

UPDATE AcademicRecord
SET avg = 90
WHERE id = 123;

cannot be interpreted — there is no unique way to change the marks for Amy
in order to get an average of 90.

Gordon Royle (UWA) Triggers 37 / 38

Checks

Materialized views

Suppose a view represents a very complex query on some data that changes
infrequently, but is queried often.

Then there may be advantages in actually storing the results of the query in
the database, rather than re-running the very complex query every time a
query is made.

This is called a materialized view, because the “virtual table” is now actually
present - it has materialized out of thin air.

MySQL does not support materialized views, although they can be simulated
in various ways — for example, having an actual table for the view, and using
triggers to make sure it is always up-to-date.

Gordon Royle (UWA) Triggers 38 / 38

	Checks

