
Databases - SQL 4

Gordon Royle

School of Mathematics & Statistics
University of Western Australia

Gordon Royle (UWA) SQL 4 1 / 29

This lecture

We continue our coverage of the fundamentals of SQL/MySQL with nested
queries, also known as subqueries.

Gordon Royle (UWA) SQL 4 2 / 29

Nested queries

Nested Queries

A nested query is a query that involves another query as one of its component
parts.

SELECT * FROM Score
WHERE event_id =

(SELECT event_id FROM GradeEvent
WHERE date = ’2014-09-09’);

Here we have a simple query that involves two SELECT statements.

Gordon Royle (UWA) SQL 4 3 / 29

Nested queries

Analysis

The inner query produces just the event_id of the test/quiz on 9th
September 2014.

SELECT event_id
FROM GradeEvent
WHERE date = ’2014-09-09’;
+----------+
| event_id |
+----------+
| 3 |
+----------+

The outer query is then equivalent to

SELECT *
FROM Score
WHERE event_id = 3;

Gordon Royle (UWA) SQL 4 4 / 29

Nested queries

Types of subquery

How a subquery can be manipulated depends on the type of results that it
produces:

A scalar subquery produces a single value (that is, a table with one row
and one column) as a result

A column subquery produces a single column as a result

A row subquery produces a single row as a result

A table subquery produces an entire table as a result

There are special operators that can be used with each of these types of query.

Gordon Royle (UWA) SQL 4 5 / 29

Scalar Subqueries

Scalar subqueries

The result of a scalar subquery can be used essentially anywhere that a single
value can be used, e.g. you can make comparisons with <, >, =, <> and so on.

Sometimes a scalar subquery is just used to find an unknown value from
another table:

SELECT *
FROM City
WHERE CountryCode = (SELECT Code

FROM Country
WHERE name = ’Australia’);

Gordon Royle (UWA) SQL 4 6 / 29

Scalar Subqueries

Equivalent to a join

A subquery like this equivalent to a join.

SELECT T.* FROM City T, Country C
WHERE T.CountryCode = C.code
AND C.name = ’Australia’;

+-----+---------------+-------------+-----------------+------------+
| ID | Name | CountryCode | District | Population |
+-----+---------------+-------------+-----------------+------------+
130	Sydney	AUS	New South Wales	3276207
131	Melbourne	AUS	Victoria	2865329
132	Brisbane	AUS	Queensland	1291117
133	Perth	AUS	West Australia	1096829
134	Adelaide	AUS	South Australia	978100

Notice the use of T.* to get all of the fields from just the City part of the
joined table.

Gordon Royle (UWA) SQL 4 7 / 29

Scalar Subqueries

Maximum population

An example of a subquery that cannot be replaced by a simple join is when
the selection is based on the result of an aggregate operation.

SELECT name, population
FROM Country
WHERE population = (SELECT MAX(population)

FROM Country);

+-------+------------+
| name | population |
+-------+------------+
| China | 1277558000 |
+-------+------------+

Gordon Royle (UWA) SQL 4 8 / 29

Scalar Subqueries

Analysis

This works as follows:

The inner query uses the summary function MAX which can only produce
a value after every row in the table has been scanned.

The outer query then causes the table to be re-scanned to locate which
actual row had that particular value.

We cannot do this in one operation — though here you may see an imperative
procedure that could do better than using two scans

Gordon Royle (UWA) SQL 4 9 / 29

Scalar Subqueries

User Variables

You can also do such a query in two steps if you wish, because MySQL
allows the user to define user variables. A user variable must begin with the @
character and can be created within a SELECT statement.

SELECT @maxpop := MAX(population)
FROM Country;

SELECT name, population
FROM Country
WHERE population = @maxpop;

The first command creates a variable called @maxpop and assigns a value to
it, while the second command uses that variable.

Gordon Royle (UWA) SQL 4 10 / 29

Scalar Subqueries

Relative comparisons

Which countries are between Germany and Indonesia according to
population?

SELECT name, population FROM
Country
WHERE population <= (SELECT population

FROM Country
WHERE name = ’Indonesia’)

AND population >= (SELECT population
FROM Country
WHERE name = ’Germany’)

ORDER BY population DESC;

Gordon Royle (UWA) SQL 4 11 / 29

Scalar Subqueries

Which countries?

+--------------------+------------+
| name | population |
+--------------------+------------+
Indonesia	212107000
Brazil	170115000
Pakistan	156483000
Russian Federation	146934000
Bangladesh	129155000
Japan	126714000
Nigeria	111506000
Mexico	98881000
Germany	82164700
+--------------------+------------+

Gordon Royle (UWA) SQL 4 12 / 29

Scalar Subqueries

Which countries have above average population density?

SELECT name, population/surfacearea AS density
FROM Country
WHERE population/surfacearea >

(SELECT AVG(population/surfacearea) FROM Country)
ORDER BY density DESC;

+-------------------------------+--------------+
| name | density |
+-------------------------------+--------------+
Macao	26277.777778
Monaco	22666.666667
Hong Kong	6308.837209
Singapore	5771.844660
Gibraltar	4166.666667
...

Gordon Royle (UWA) SQL 4 13 / 29

Multiple-valued subqueries

IN and NOT IN

If a subquery returns more than one value, then it can be treated as a set of
values and the outer query can test whether values are IN or NOT IN this set.

For example, we can find out which sailors in the Sailor table have not
reserved any boats.

SELECT * FROM Sailor
WHERE sid NOT IN (SELECT sid

FROM Reserves);
+-----+--------+------+
| sid | sname | age |
+-----+--------+------+
29	Brutus	33
32	Andy	25.5
58	Rusty	35
...

Gordon Royle (UWA) SQL 4 14 / 29

Multiple-valued subqueries

Analysis I

The inner query is

SELECT sid
FROM Reserves;
+-----+
| sid |
+-----+
| 22 |
| 22 |
| 22 |
| 22 |
| 31 |
...

which is a single-column table containing the ids of sailors who have reserved
boats.

Gordon Royle (UWA) SQL 4 15 / 29

Multiple-valued subqueries

Analysis 2

The outer query then asks for any ids that are not in the set of ids produced by
the inner query. It is equivalent to

SELECT *
FROM Sailor
WHERE sid NOT IN (22, 31, 64, 74);

Gordon Royle (UWA) SQL 4 16 / 29

Multiple-valued subqueries

Further examples

Which students are not enrolled in any classes?

SELECT S.sname
FROM Student S
WHERE S.snum NOT IN

(SELECT snum FROM Enrolled);
+-----------------+
| sname |
+-----------------+
| Maria White |
| Charles Harris |
| Angela Martinez |
...

This uses the same idea as the previous example.

Gordon Royle (UWA) SQL 4 17 / 29

Multiple-valued subqueries

Most populous country in each region

Suppose we want to find the most heavily-populated country in each of the
world’s regions. We know how to find the maximum population easily
enough.

SELECT C.region,
Max(C.population) AS maxpop

FROM Country C
GROUP BY region;
+---------------------------+------------+
| region | maxpop |
+---------------------------+------------+
Antarctica	0
Australia and New Zealand	18886000
Baltic Countries	3698500
British Islands	59623400

This tells us that, for example, that the biggest country in the Baltic Countries
has a population of 3698500, but not which country

Gordon Royle (UWA) SQL 4 18 / 29

Multiple-valued subqueries

Incorrect approach

An obvious, but unfortunately incorrect, approach would be to try

SELECT C.region,
C.name,
Max(C.population) AS maxpop

FROM Country C
GROUP BY C.region
+------------------+----------------------------+------------+
| region | name | maxpop |
+------------------+----------------------------+------------+
Antarctica	Antarctica	0
Australia and NZ	Australia	18886000
Baltic Countries	Latvia	3698500
British Islands	United Kingdom	59623400
Caribbean	Netherlands Antilles	11201000

Gordon Royle (UWA) SQL 4 19 / 29

Multiple-valued subqueries

Why is this incorrect?

This is such a common error that it is very important to understand why it is
not correct.

The issue is that

The region field is one of the GROUP BY fields and so has the same
value for all the rows in each group

The name field is not one of the GROUP BY fields and so the rows in
each group can have different values for this field.

Gordon Royle (UWA) SQL 4 20 / 29

Multiple-valued subqueries

Why is this incorrect?

So after the groups have been formed (internally, by MySQL) the group for
the Baltic countries looks like this:

Baltic Countries	Latvia	2424200
Baltic Countries	Estonia	1439200
Baltic Countries	Lithuania	3698500

The presence of the summary function MAX indicates that each group should
be summarised into a single row containing a region, a name and a MAX
value.

Gordon Royle (UWA) SQL 4 21 / 29

Multiple-valued subqueries

Correct Approach 1

One correct approach would be to use an inner query that first determines the
maximum population for each region, and then an outer query that “attaches”
the correct country name to that pair.

SELECT C.region,
C.name,
C.population

FROM Country C
WHERE (C.region, C.population) IN (SELECT C2.region,

MAX(C2.population)
FROM Country C2
GROUP BY region);

Gordon Royle (UWA) SQL 4 22 / 29

Multiple-valued subqueries

Correct Approach 2

The second correct approach uses a correlated subquery which is where the
subquery refers to a table from the outer query.

SELECT C.region,
C.name,
C.population

FROM Country C
WHERE C.population = (SELECT MAX(population)

FROM Country C2
WHERE C2.region = C.region);

This subquery is called correlated because it involves a value (C.region)
that comes from a table in the outer query.

Gordon Royle (UWA) SQL 4 23 / 29

Multiple-valued subqueries

Visualizing correlated subqueries

Conceptually, we imagine a correlated subquery as being run once for each
row of the table that it refers to.

For the query on the previous slide, we imagine C being set equal to each row
of the table Country in turn:

Afghanistan	Southern and Central Asia	22720000
Netherlands	Western Europe	15864000
Netherlands Antilles	Caribbean	217000
...

Then each time through, the maximum population of the region C.region
is computed and compared to the actual population of C.

Gordon Royle (UWA) SQL 4 24 / 29

More examples

Example schema

We will use a schema regarding industrial parts (spanners, wrenches etc),
suppliers of those parts, and a catalogue that indicates who is supplying which
part at what price.

CREATE TABLE Suppliers (
sid INT PRIMARY KEY,
sname VARCHAR(64),
address VARCHAR(512));

CREATE TABLE Parts (
pid INT PRIMARY KEY,
pname VARCHAR(64),
colour VARCHAR(16));

Gordon Royle (UWA) SQL 4 25 / 29

More examples

The catalogue

CREATE TABLE Catalogue (
sid INT,
pid INT,
price DECIMAL(10, 2));

So Catalogue is a relationship between parts and suppliers.

(Probably it would be better named Supplies to stick to the entity-noun,
relationship-verb model.)

Gordon Royle (UWA) SQL 4 26 / 29

More examples

EXISTS and NOT EXISTS

The clauses EXISTS and NOT EXISTS can be used in conjunction with a
subquery simply to see if that subquery returns any results.

This kind of construct can be useful when answering all or none questions in
relational tables. For example, consider the question:

Which suppliers do not supply any parts?

SELECT S.sname
FROM Suppliers S
WHERE NOT EXISTS (SELECT *

FROM Catalogue C
WHERE S.sid = C.sid);

Gordon Royle (UWA) SQL 4 27 / 29

More examples

Who supplies every part

To find out who supplies every part in the catalogue requires a bit of linguistic
contortion.

First let’s find out which parts a supplier with id sid does not supply —
notice that this is not a fully-formed query because sid is not qualified.

SELECT P.pid
FROM Parts P
WHERE NOT EXISTS (SELECT *

FROM Catalogue C
WHERE C.pid = P.pid

AND C.sid = sid);

Gordon Royle (UWA) SQL 4 28 / 29

More examples

Double negative

Now a supplier supplies every part if we cannot find a part that the supplier
does not supply.

SELECT S.sname
FROM Suppliers S
WHERE NOT EXISTS (SELECT P.pid

FROM Parts P
WHERE NOT EXISTS (SELECT *

FROM Catalogue C
WHERE C.pid = P.pid

AND C.sid = S.sid));

Gordon Royle (UWA) SQL 4 29 / 29

	Nested queries
	Scalar Subqueries
	Multiple-valued subqueries
	More examples

