
Databases - SQL3

Gordon Royle

School of Mathematics & Statistics
University of Western Australia

Gordon Royle (UWA) SQL 3 1 / 46

This lecture

This lecture focuses on the summary or aggregate features provided in
MySQL.

These functions all have the following effect:

The “candidate rows”1 are collected into groups

Each group contributes just one row to the output table

Used to provide summary data about the group in some way

1In other words, the rows of the intermediate table that results from all the joins and
selections in the FROM clause

Gordon Royle (UWA) SQL 3 2 / 46

Summary Functions

One of the main uses of a database is to summarize the data it contains, in
particular to provide statistical data.

The main summary functions are

COUNT – to count rows

SUM – to add the values in a column

MIN – to find the minimum value in a column

MAX – to find the maximum value in a column

AVG – to find the average value in a column

STD – to find the standard deviation of the values in a column

Gordon Royle (UWA) SQL 3 3 / 46

Structure of a summary

If any of the output columns use any of the aggregate functions, then either

There is a GROUP BY attribute specified
The rows are formed into groups according to that attribute, and the
output table will contain one row per group

There is no GROUP BY attribute specified
The entire table is treated as one group, and the output table will contain
just one row

Gordon Royle (UWA) SQL 3 4 / 46

Just one group

If there is an aggregate function present (in this case SUM) and no GROUP
BY, then there will be one row output.

SELECT SUM(Population)
FROM City;
+-----------------+
| SUM(Population) |
+-----------------+
| 1429559884 |
+-----------------+
1 row in set (0.00 sec)

How to think about this?

Gordon Royle (UWA) SQL 3 5 / 46

Behind the scenes

The FROM table is City, which we recall looks something like this

SELECT * FROM City;
+----+----------------+-------------+------------+
| ID | Name | CountryCode | Population |
+----+----------------+-------------+------------+
1	Kabul	AFG	1780000
2	Qandahar	AFG	237500
3	Herat	AFG	186800
4	Mazar-e-Sharif	AFG	127800
...

Gordon Royle (UWA) SQL 3 6 / 46

What was selected?

The presence of the SUM(Population) had the effect of

Forming all the rows into one large group

Adding up the Population field of each row

Producing a single row as output

Gordon Royle (UWA) SQL 3 7 / 46

More than one aggregate function

The data can be summarised in several ways at once

SELECT MIN(Population), MAX(Population)
FROM City;
+-----------------+-----------------+
| MIN(Population) | MAX(Population) |
+-----------------+-----------------+
| 42 | 10500000 |
+-----------------+-----------------+
1 row in set (0.00 sec)

Gordon Royle (UWA) SQL 3 8 / 46

Renaming

The usual rules apply for renaming

SELECT MIN(Population) AS smallest,
MAX(Population) AS biggest

FROM City;
+----------+----------+
| smallest | biggest |
+----------+----------+
| 42 | 10500000 |
+----------+----------+
1 row in set (0.00 sec)

Gordon Royle (UWA) SQL 3 9 / 46

French cities

SELECT MIN(Population),
MAX(Population)

FROM City
WHERE CountryCode = ’FRA’;
+-----------------+-----------------+
| MIN(Population) | MAX(Population) |
+-----------------+-----------------+
| 90674 | 2125246 |
+-----------------+-----------------+

Gordon Royle (UWA) SQL 3 10 / 46

German cities

SELECT MIN(Population),
MAX(Population)

FROM City
WHERE CountryCode = ’DEU’;
+-----------------+-----------------+
| MIN(Population) | MAX(Population) |
+-----------------+-----------------+
| 89667 | 3386667 |
+-----------------+-----------------+

Gordon Royle (UWA) SQL 3 11 / 46

What do we really want?

What we really want is to be able to do is:

summarise the data for each country individually, but

get the results for all the countries at once.

This is the purpose of the GROUP BY statement.

Gordon Royle (UWA) SQL 3 12 / 46

Grouping

SELECT MIN(Population),
MAX(Population)

FROM City
GROUP BY CountryCode;
+-----------------+-----------------+
| MIN(Population) | MAX(Population) |
+-----------------+-----------------+
29034	29034
127800	1780000
118200	2022000
595	961
270000	270000
21189	21189
2345	2345
....

Gordon Royle (UWA) SQL 3 13 / 46

What is happening?

First the rows are grouped by CountryCode — we can “simulate” this
grouping by using the ORDER BY statement.

SELECT * FROM City
ORDER BY CountryCode;
+-----+------------------+-------------+------------+
| ID | Name | CountryCode | Population |
+-----+------------------+-------------+------------+
129	Oranjestad	ABW	29034
1	Kabul	AFG	1780000
4	Mazar-e-Sharif	AFG	127800
3	Herat	AFG	186800
2	Qandahar	AFG	237500
58	Lobito	AGO	130000
59	Benguela	AGO	128300
57	Huambo	AGO	163100
56	Luanda	AGO	2022000
60	Namibe	AGO	118200
62	The Valley	AIA	595
61	South Hill	AIA	961

Gordon Royle (UWA) SQL 3 14 / 46

Grouping

So the first group is

+-----+------------------+-------------+------------+
| ID | Name | CountryCode | Population |
+-----+------------------+-------------+------------+
| 129 | Oranjestad | ABW | 29034 |
+-----+------------------+-------------+------------+

and so the requested summary data for that group is the first row of the output.

Gordon Royle (UWA) SQL 3 15 / 46

Grouping 2

The second group is

+-----+------------------+-------------+------------+
| ID | Name | CountryCode | Population |
+-----+------------------+-------------+------------+
1	Kabul	AFG	1780000
4	Mazar-e-Sharif	AFG	127800
3	Herat	AFG	186800
2	Qandahar	AFG	237500
+-----+------------------+-------------+------------+

and so the summary line for that group is

+-----------------+-----------------+
| MIN(Population) | MAX(Population) |
+-----------------+-----------------+
| 127800 | 1780000 |
+-----------------+-----------------+

Gordon Royle (UWA) SQL 3 16 / 46

But we want more

Ideally though, we want each summary line to be labelled so that the group
can be identified.

SELECT CountryCode,
MIN(Population),
MAX(Population)

FROM City
GROUP BY CountryCode;
+-------------+-----------------+-----------------+
| CountryCode | MIN(Population) | MAX(Population) |
+-------------+-----------------+-----------------+
ABW	29034	29034
AFG	127800	1780000
AGO	118200	2022000
AIA	595	961
ALB	270000	270000
AND	21189	21189
ANT	2345	2345
ARE	114395	669181

Gordon Royle (UWA) SQL 3 17 / 46

How to understand this

The SELECT statement specified three output columns — two were aggregate
functions, but one was not an aggregate function.

This only makes sense if the non-aggregate output columns are constant on
the groups — in particular, this will be true if the non-aggregate output
columns are all GROUP BY columns.

However, MySQL does not enforce this rule.

Gordon Royle (UWA) SQL 3 18 / 46

This lecture

We continue coverage of the aggregate functions of SQL

Gordon Royle (UWA) SQL 3 19 / 46

Another example

For this lecture we’ll use an example based on Paul Dubois’s book MySQL.

The database is to be used to keep student marks while taking a particular
unit.

Students have a first name, a gender and a unique student number

GradeEvents are either tests or quizzes and happen on a particular
date

Students tests or quizzes and get a score for that particular “event”

Gordon Royle (UWA) SQL 3 20 / 46

The ER diagram

student-id

name

gender

Student

event-id

date

type

GradeEventscore

Score

Gordon Royle (UWA) SQL 3 21 / 46

Creating the tables

CREATE TABLE Student (
name VARCHAR(20) NOT NULL,
gender ENUM(’F’,’M’) NOT NULL,
student_id INT NOT NULL AUTO_INCREMENT,
PRIMARY KEY(student_id)

) ENGINE = InnoDB;

This contains a few things we have already seen, but a couple of new ones, a
PRIMARY KEY and the statement NOT NULL.

Gordon Royle (UWA) SQL 3 22 / 46

Keys

A key for a relation / table is an attribute that cannot contain repeated values.

We think of it as a value that is enough to uniquely identify a row in the table.

For example, a student number uniquely identifies a student, so a table
containing two rows with the same student number is probably corrupt and
likely to be problematic.

A key can be a single attribute, a combination of attributes, or an artificial
identifier (like student number).

Gordon Royle (UWA) SQL 3 23 / 46

The table

SELECT *
FROM Student;
+-----------+--------+------------+
| name | gender | student_id |
+-----------+--------+------------+
Megan	F	1
Joseph	M	2
Kyle	M	3
Katie	F	4
...		
Gabrielle	F	29
Grace	F	30
Emily	F	31
+-----------+--------+------------+
31 rows in set (0.00 sec)

Gordon Royle (UWA) SQL 3 24 / 46

Enforcing key constraints

Attempting to insert a row with a duplicate value will fail.

INSERT INTO Student
VALUES(’James’,’M’,31);

ERROR 1062 (23000): Duplicate entry ’31’ for key ’PRIMARY’

This is an instance of the many ways in which SQL attempts to ensure data
integrity — that the data is the database is internally consistent.

Gordon Royle (UWA) SQL 3 25 / 46

“Don’t care” values

We don’t actually care which student number is given to James, so declare the
field to be AUTO_INCREMENT.

INSERT INTO Student
VALUES(’James’,’M’,NULL);

Query OK, 1 row affected (0.00 sec)

Hmm, what student_id has James been given?

+-----------+--------+------------+
| name | gender | student_id |
+-----------+--------+------------+
| Megan | F | 1 |
| Joseph | M | 2 |
....
| Emily | F | 31 |
| James | M | 32 |
+-----------+--------+------------+

Gordon Royle (UWA) SQL 3 26 / 46

Creating the tables

CREATE TABLE GradeEvent (
date DATE NOT NULL,
category ENUM(’T’,’Q’) NOT NULL,
event_id INT NOT NULL AUTO_INCREMENT,
PRIMARY KEY (event_id)

) ENGINE = InnoDB;

Gordon Royle (UWA) SQL 3 27 / 46

The score table

CREATE TABLE Score (
student_id INT NOT NULL,
event_id INT NOT NULL,
score INT NOT NULL,
PRIMARY KEY (event_id, student_id),
FOREIGN KEY (event_id)

REFERENCES GradeEvent (event_id),
FOREIGN KEY (student_id)
REFERENCES Student (student_id)

) ENGINE = InnoDB;

This contains one major new feature — the FOREIGN KEY constraints on
the attributes event_id and student_id.

Gordon Royle (UWA) SQL 3 28 / 46

The data

SELECT *
FROM GradeEvent;
+------------+----------+----------+
| date | category | event_id |
+------------+----------+----------+
2014-09-03	Q	1
2014-09-06	Q	2
2014-09-09	T	3
2014-09-16	Q	4
2014-09-23	Q	5
2014-10-01	T	6
+------------+----------+----------+
6 rows in set (0.01 sec)

Gordon Royle (UWA) SQL 3 29 / 46

The data

mysql> SELECT * FROM Score;
+------------+----------+-------+
| student_id | event_id | score |
+------------+----------+-------+
1	1	20
3	1	20
4	1	18
...		
...		
28	6	77
29	6	66
30	6	68
31	6	76
+------------+----------+-------+
173 rows in set (0.00 sec)

Gordon Royle (UWA) SQL 3 30 / 46

Counting students

How many students are in the class?

SELECT COUNT(*) FROM student;
+----------+
| COUNT(*) |
+----------+
| 31 |
+----------+

The COUNT function says to count the number of rows that are returned by
the SELECT statement.

This syntax is strange at first sight, but interpreting COUNT as just another
summary function makes it seem much more logical

Gordon Royle (UWA) SQL 3 31 / 46

How many men and women?

Use the WHERE clause to limit the chosen rows.

SELECT COUNT(*)
FROM student
WHERE gender = ’M’;
+----------+
| COUNT(*) |
+----------+
| 16 |
+----------+

SELECT
COUNT(*) FROM student
WHERE gender = ’F’;
+----------+
| COUNT(*) |
+----------+
| 15 |
+----------+

Gordon Royle (UWA) SQL 3 32 / 46

With one statement

We can count both men and women in a single statement by using the GROUP
BY clause — recall that this first groups the rows and then summarises each
group into a single summary row.

SELECT COUNT(*)
FROM student
GROUP BY gender;
+----------+
| COUNT(*) |
+----------+
| 15 |
| 16 |
+----------+

Gordon Royle (UWA) SQL 3 33 / 46

But which is which

As it stands, we don’t know which value is associated with which gender!

SELECT gender, COUNT(*)
FROM student
GROUP BY gender;
+-----+----------+
| gender | COUNT(*) |
+-----+----------+
| F | 15 |
| M | 16 |
+-----+----------+

The GROUP BY clause says to first group the rows according to the distinct
values of the specified attribute(s) and then do the counting.

Gordon Royle (UWA) SQL 3 34 / 46

Statistical Data

Now let’s try and find statistical data about the quizzes and tests.

SELECT event_id,
MIN(score),
MAX(score),
AVG(score)

FROM score
GROUP BY event_id;
+----------+------------+------------+------------+
| event_id | MIN(score) | MAX(score) | AVG(score) |
+----------+------------+------------+------------+
1	9	20	15.1379
2	8	19	14.1667
3	60	97	78.2258
4	7	20	14.0370
5	8	20	14.1852
6	62	100	80.1724
+----------+------------+------------+------------+

Gordon Royle (UWA) SQL 3 35 / 46

Counting tests and quizzes

How many of the events were tests and how many were quizzes?

SELECT G.category, COUNT(*)
FROM GradeEvent G
GROUP BY G.category;

+----------+----------+
| category | COUNT(*) |
+----------+----------+
| T | 2 |
| Q | 4 |
+----------+----------+

Gordon Royle (UWA) SQL 3 36 / 46

Separating tests and quizzes

Can we get separate summary data for the quizzes and the tests? To do this we
will need to do a multi-table query because Score does not know what type
each event is.

SELECT G.category,
AVG(S.score)

FROM GradeEvent G,
Score S

WHERE G.event_id = S.event_id
GROUP BY G.category;
+----------+--------------+
| category | AVG(S.score) |
+----------+--------------+
| T | 79.1667 |
| Q | 14.3894 |
+----------+--------------+

Gordon Royle (UWA) SQL 3 37 / 46

Separating males and females

SELECT G.category,
S.gender,
AVG(M.score)

FROM GradeEvent G,
Student S,
Score M

WHERE G.event_id = M.event_id
AND M.student_id = S.student_id

GROUP BY G.category,
S.gender;

+----------+--------+--------------+
| category | gender | AVG(M.score) |
+----------+--------+--------------+
T	F	77.5862
T	M	80.6452
Q	F	14.6981
Q	M	14.1167
+----------+--------+--------------+
4 rows in set (0.00 sec)

Gordon Royle (UWA) SQL 3 38 / 46

Nested aggregation

Now we want to do multi-level aggregation!

SELECT G.category,
S.gender,
AVG(M.score)

FROM GradeEvent G,
Student S,
Score M

WHERE G.event_id = M.event_id
AND M.student_id = S.student_id

GROUP BY G.category,
S.gender WITH ROLLUP;

What does ROLLUP do?

Gordon Royle (UWA) SQL 3 39 / 46

Rollup

+----------+--------+--------------+
| category | gender | AVG(M.score) |
+----------+--------+--------------+
Q	F	14.6981
Q	M	14.1167
Q	NULL	14.3894
T	F	77.5862
T	M	80.6452
T	NULL	79.1667
NULL	NULL	36.8555
+----------+--------+--------------+

Gordon Royle (UWA) SQL 3 40 / 46

What ROLLUP does

The ROLLUP clause generates “summaries of summaries” that are inserted at
appropriate places in the table.

The GROUP BY G.category, S.gender clause summarises the data
according to the four groups (Q,F), (Q,M), (T,F), (T,M).

Rollup causes these groups to be further grouped together into (Q, M/F)
and (T, M/F) and then finally combined into a single group.

The fields where multiple values have been counted together are displayed in
the result set by using NULL for that field.

Gordon Royle (UWA) SQL 3 41 / 46

Adding the names

At the end of semester, the lecturer needs to know how many marks each
person got in their quizzes and tests.

SELECT S.name,
G.category,
COUNT(*),
SUM(M.score)

FROM GradeEvent G,
Student S,
Score M

WHERE G.event_id = M.event_id
AND S.student_id = M.student_id

GROUP BY S.name,
G.category WITH ROLLUP;

Gordon Royle (UWA) SQL 3 42 / 46

The output

+-----------+----------+----------+--------------+
| name | category | COUNT(*) | SUM(M.score) |
+-----------+----------+----------+--------------+
Abby	Q	4	63
Abby	T	2	194
Abby	NULL	6	257
Aubrey	Q	4	58
Aubrey	T	2	137
Aubrey	NULL	6	195
Avery	Q	3	40
Avery	T	2	138
Avery	NULL	5	178
Becca	Q	4	60
Becca	T	2	176

Gordon Royle (UWA) SQL 3 43 / 46

Filtering on aggregate values

Suppose we want to find the student who got the highest average quiz mark.

SELECT S.name, COUNT(*), AVG(M.score)
FROM GradeEvent G, student S, score M
WHERE G.category = ’Q’
AND G.event_id = M.event_id
AND S.student_id = M.student_id
GROUP BY S.name
ORDER BY AVG(M.score) DESC;

+-----------+----------+--------------+
| name | COUNT(*) | AVG(M.score) |
+-----------+----------+--------------+
Megan	3	17.3333
Gabrielle	3	17.0000
Michael	4	16.7500
Teddy	4	16.2500

Gordon Royle (UWA) SQL 3 44 / 46

Using HAVING

But the quiz-prize can only go to a student who sat all of the quizzes.

SELECT S.name, COUNT(*), AVG(M.score)
FROM GradeEvent G, student S, score M
WHERE G.category = ’Q’
AND G.event_id = M.event_id
AND S.student_id = M.student_id
GROUP BY S.name
HAVING COUNT(*) = 4
ORDER BY AVG(M.score) DESC;

+---------+----------+--------------+
| name | COUNT(*) | AVG(M.score) |
+---------+----------+--------------+
| Michael | 4 | 16.7500 |
| Teddy | 4 | 16.2500 |

Gordon Royle (UWA) SQL 3 45 / 46

Summary

The HAVING clause behaves exactly like a WHERE clause except that it
operates on the summarized data, so the whole process is as follows:

The named columns are extracted from the Cartesian product of all the
tables listed in the FROM clause.

All of these rows are then filtered according to the WHERE clause.

The filtered rows are then grouped together according to the GROUP BY
clause.

The aggregate functions are applied to the rows in each group, forming
one summary row per group.

The resulting rows are then filtered by the HAVING clause.

The filtered, aggregated rows are then ordered by the ORDER BY clause.

Gordon Royle (UWA) SQL 3 46 / 46

