
Databases — SQL2

Gordon Royle

School of Mathematics & Statistics
University of Western Australia

Gordon Royle (UWA) SQL2 1 / 26

This lecture

This lecture introduces the fundamental concept of

SELECT from multiple tables

In order to select from multiple tables, the tables must be joined — so this
lecture is also about the various types of JOIN.

Gordon Royle (UWA) SQL2 2 / 26

Multiple table selections

The real power (and complexity) of SELECT comes from the ability to
rapidly extract data from more than one table.

A multiple table SELECT statement can become very complex, and
(unfortunately) the syntax can often seem somewhat counterintuitive — this is
largely because the lack of general programming constructs in SQL.

The key to mentally parsing SQL statements is to keep in mind the
fundamental “row-processing loop”

Construct rows according to the FROM statement

Filter rows according to the WHERE statement

Extract columns according to the SELECT statement

Gordon Royle (UWA) SQL2 3 / 26

A sample schema

We use the following sample tables:

Student – this stores student numbers and student names
CREATE TABLE Student(id CHAR(8), name VARCHAR(64));

Unit – this stores unit codes and unit names
CREATE TABLE Unit(id CHAR(8), name VARCHAR(64));

Enrolled – this stores enrolment information
CREATE TABLE Enrolled (sid CHAR(8), uid CHAR(8));

The intention of this set up is that the table Enrolled is meant to “connect”
the other two tables — later we will see how to enforce this rule in SQL.

Gordon Royle (UWA) SQL2 4 / 26

An ER diagram

id name

Student

id name

Unit

Enrolled

A diagram like this is called an entity-relationship (or ER) diagram — it
shows the entities being modelled and the relationships between them.

Gordon Royle (UWA) SQL2 5 / 26

Student

mysql> SELECT * FROM Student;
+------+-------+
| id | name |
+------+-------+
1	Amy
2	Bob
3	Chao
4	Emily
5	Fan
+------+-------+
5 rows in set (0.00 sec)

There are a total of 5 students.

Gordon Royle (UWA) SQL2 6 / 26

Unit

mysql> SELECT * FROM Unit;
+----------+-------------+
| id | name |
+----------+-------------+
CITS1401	Databases
CITS1402	Programming
MATH1001	Maths 1
MATH1002	Maths 2
+----------+-------------+
4 rows in set (0.00 sec)

There are a total of 4 units.

Gordon Royle (UWA) SQL2 7 / 26

Enrolled

mysql> SELECT * FROM Enrolled;
+------+----------+
| sid | uid |
+------+----------+
1	CITS1401
2	CITS1401
4	CITS1401
2	CITS1402
3	CITS1402
4	CITS1402
1	MATH1001
2	MATH1001
3	MATH1001
+------+----------+
9 rows in set (0.00 sec)

There are a total of 9 enrolments.

Gordon Royle (UWA) SQL2 8 / 26

A class list

With these tables, how can we find out who is taking CITS1402?

The enrolment information is in Enrolled

The student name information is in Student

Somehow we have to combine these tables to pull out the information.

Gordon Royle (UWA) SQL2 9 / 26

The basic join

mysql> SELECT * FROM Student, Enrolled;
+------+-------+------+----------+
| id | name | sid | uid |
+------+-------+------+----------+
1	Amy	1	CITS1401
2	Bob	1	CITS1401
3	Chao	1	CITS1401
4	Emily	1	CITS1401
5	Fan	1	CITS1401
1	Amy	2	CITS1401
2	Bob	2	CITS1401
3	Chao	2	CITS1401
4	Emily	2	CITS1401
5	Fan	2	CITS1401
....			
4	Emily	3	MATH1001
5	Fan	3	MATH1001
+------+-------+------+----------+
45 rows in set (0.00 sec)

Yikes, why are there 45 rows in this table?

Gordon Royle (UWA) SQL2 10 / 26

The basic join

MySQL produces every possible row constructed by “gluing together” a row
from Student and a row from Enrolled.

+------+-------+ +------+----------+
| id | name | | sid | uid |
+------+-------+ +------+----------+
1	Amy		1	CITS1401
2	Bob		2	CITS1401
3	Chao			
... ...

This give us

+------+-------+------+----------+
| id | name | sid | uid |
+------+-------+------+----------+
1	Amy	1	CITS1401
2	Bob	1	CITS1401
3	Chao	1	CITS1401
...

Gordon Royle (UWA) SQL2 11 / 26

Cartesian product

In fact, this command has computed the entire Cartesian product

Student× Enrolled

The Cartesian product contains rows whose “first half” and “second half”
relate to different students, but we want the join to compute only the valid
rows.

In other words we want to “match up” the rows so that we only keep the ones
where the id column matches the sid column.

Gordon Royle (UWA) SQL2 12 / 26

Use WHERE

SELECT *
FROM Student, Enrolled
WHERE id = sid;
+------+-------+------+----------+
| id | name | sid | uid |
+------+-------+------+----------+
1	Amy	1	CITS1401
2	Bob	2	CITS1401
4	Emily	4	CITS1401
2	Bob	2	CITS1402
3	Chao	3	CITS1402
4	Emily	4	CITS1402
1	Amy	1	MATH1001
2	Bob	2	MATH1001
3	Chao	3	MATH1001
+------+-------+------+----------+
9 rows in set (0.00 sec)

Gordon Royle (UWA) SQL2 13 / 26

The class list

We need to modify this in two ways — just print the names and only for the
rows corresponding to CITS1402.

SELECT name
FROM Student, Enrolled
WHERE id = sid

AND uid = ’CITS1402’;
+-------+
| name |
+-------+
| Bob |
| Chao |
| Emily |
+-------+
3 rows in set (0.00 sec)

The second WHERE condition is playing a subtly different role to the first —
the first condition is “setting up the correct table” while the second condition
is “selecting the rows we want”.

Gordon Royle (UWA) SQL2 14 / 26

Moving the join condition

We can separate out the join condition using a different construct that
explicitly highlights the join — this is the JOIN...ON construction.

SELECT *
FROM Student JOIN Enrolled

ON id = sid;
+------+-------+------+----------+
| id | name | sid | uid |
+------+-------+------+----------+
1	Amy	1	CITS1401
2	Bob	2	CITS1401
4	Emily	4	CITS1401
2	Bob	2	CITS1402
3	Chao	3	CITS1402
4	Emily	4	CITS1402
1	Amy	1	MATH1001

Gordon Royle (UWA) SQL2 15 / 26

Put the WHERE conditions back

SELECT *
FROM Student JOIN Enrolled
ON id = sid
WHERE uid = ’CITS1402’;
+------+-------+------+----------+
| id | name | sid | uid |
+------+-------+------+----------+
2	Bob	2	CITS1402
3	Chao	3	CITS1402
4	Emily	4	CITS1402
+------+-------+------+----------+

The phrase INNER JOIN can be used rather than JOIN, although they have
exactly the same meaning.

Gordon Royle (UWA) SQL2 16 / 26

Cartesian Products

There are (at least) three other ways to get the Cartesian product of two tables.

SELECT * FROM Student CROSS JOIN Enrolled;
SELECT * FROM Student CARTESIAN JOIN Enrolled;
SELECT * FROM Student JOIN Enrolled;

Gordon Royle (UWA) SQL2 17 / 26

A three-table join

Suppose we want a class list containing the names of students taking
Databases (i.e. this time we don’t know that the right code is CITS1402.

We need the Student table for the student name information

We need the Unit table for the unit name information

We need the Enrolled table to “connect” the right students with the
right units

Gordon Royle (UWA) SQL2 18 / 26

Triple product

SELECT * FROM Student, Enrolled, Unit;
+------+-------+------+----------+----------+-------------+
| id | name | sid | uid | id | name |
+------+-------+------+----------+----------+-------------+
1	Amy	1	CITS1401	CITS1401	Databases
1	Amy	1	CITS1401	CITS1402	Programming
1	Amy	1	CITS1401	MATH1001	Maths 1
1	Amy	1	CITS1401	MATH1002	Maths 2
2	Bob	1	CITS1401	CITS1401	Databases
2	Bob	1	CITS1401	CITS1402	Programming
...					
...					
5	Fan	3	MATH1001	CITS1402	Programming
5	Fan	3	MATH1001	MATH1001	Maths 1
5	Fan	3	MATH1001	MATH1002	Maths 2
+------+-------+------+----------+----------+-------------+
180 rows in set (0.00 sec)

Gordon Royle (UWA) SQL2 19 / 26

Doing the join

This produces the triple Cartesian product

Student× Enrolled× Unit

so what conditions are needed to ensure that the join makes sense?

We need id = sid to correctly join Student and Enrolled

We need uid = id to correctly join Enrolled and Unit

But we have two columns called id?

Gordon Royle (UWA) SQL2 20 / 26

Disambiguation

SELECT *
FROM Student JOIN Enrolled JOIN Unit
ON id = sid AND uid = id;

ERROR 1052 (23000): Column ’id’ in on clause is ambiguous

The error message says it all — the column id is ambiguous, so we need to be
able to specify “the id column that originally came from Student”.

Gordon Royle (UWA) SQL2 21 / 26

Qualifying the columns

SELECT *
FROM Student JOIN Enrolled JOIN Unit
ON Student.id = sid AND Unit.id = uid;
+------+-------+------+----------+----------+-------------+
| id | name | sid | uid | id | name |
+------+-------+------+----------+----------+-------------+
1	Amy	1	CITS1401	CITS1401	Databases
2	Bob	2	CITS1401	CITS1401	Databases
4	Emily	4	CITS1401	CITS1401	Databases
2	Bob	2	CITS1402	CITS1402	Programming
3	Chao	3	CITS1402	CITS1402	Programming
4	Emily	4	CITS1402	CITS1402	Programming
1	Amy	1	MATH1001	MATH1001	Maths 1
2	Bob	2	MATH1001	MATH1001	Maths 1
3	Chao	3	MATH1001	MATH1001	Maths 1
+------+-------+------+----------+----------+-------------+
9 rows in set (0.00 sec)

Gordon Royle (UWA) SQL2 22 / 26

Aliases

SELECT *
FROM Student S JOIN Enrolled E JOIN Unit U
ON S.id = E.sid AND E.uid = U.id
WHERE U.name = ’Databases’;
+------+-------+------+----------+----------+-----------+
| id | name | sid | uid | id | name |
+------+-------+------+----------+----------+-----------+
1	Amy	1	CITS1401	CITS1401	Databases
2	Bob	2	CITS1401	CITS1401	Databases
4	Emily	4	CITS1401	CITS1401	Databases
+------+-------+------+----------+----------+-----------+

The phrase Student S in the FROM clause means: “Use S as an alias for
Student for this query”.

Gordon Royle (UWA) SQL2 23 / 26

Natural Join

It is common for two tables to have columns with identical names because
they refer to the same thing — for example, both City and CountryLanguage

have a column CountryCode referring to the country.

SELECT Name, Language
FROM City C JOIN CountryLanguage L
ON C.CountryCode = L.CountryCode
WHERE Name = ’Perth’;
+-------+----------------+
| Name | Language |
+-------+----------------+
Perth	Arabic
Perth	Canton Chinese
Perth	English
Perth	German
Perth	Greek
...

Gordon Royle (UWA) SQL2 24 / 26

Natural Join

The NATURAL JOIN operator joins tables by matching all columns with the
same names:

SELECT Name, Language
FROM City NATURAL JOIN CountryLanguage
WHERE Name = ’Perth’;
+-------+----------------+
| Name | Language |
+-------+----------------+
Perth	Arabic
Perth	Canton Chinese
Perth	English
Perth	German
...

Gordon Royle (UWA) SQL2 25 / 26

Being careful

The NATURAL JOIN may have some unexpected consequences in terms of the
other columns — if a new column gets added to one of the tables that happens
to have the same name as a column in the other, then the behaviour will
mysteriously change.

To be safe, it is better to always make joins explicit.

SELECT Name, Language
FROM City JOIN CountryLanguage
USING (CountryCode)

WHERE Name = ’Perth’;

Gordon Royle (UWA) SQL2 26 / 26

