
Databases - SELECT

Gordon Royle

School of Mathematics & Statistics
University of Western Australia

Gordon Royle (UWA) Introduction 1 / 16

The SELECT statement

This lecture reviews what we know about the SELECT statement, which is the
cornerstone of database use.

Gordon Royle (UWA) Introduction 2 / 16

The structure

This is the template for a SELECT statement.

SELECT columns (1)
FROM tables (2)
WHERE conditions (3)
GROUP BY group columns (4)
HAVING more conditions (5)
ORDER BY sort columns (6)
LIMIT number (7)

Gordon Royle (UWA) Introduction 3 / 16

Conceptual execution plan

SQL builds a “master-table” by joining the tables specified in the FROM clause (2)

SQL processes each row, keeping only the rows that satisfy the WHERE clause (3)

SQL forms the rows into groups according to the GROUP BY clause (4)

SQL takes each group in turn, and produces one summary row per group, by choosing
either named or calculated columns according to the SELECT clause (1)

SQL processes each summary row, keeping the rows that satisfy the HAVING clause (5)

The rows that have passed every test so far are then sorted according to the values
specified in the ORDER BY clause

This table is output, limited to the number of rows specified in the LIMIT clause

Gordon Royle (UWA) Introduction 4 / 16

Columns (1)

Columns (1) is a comma-separated list of items, each of which will contribute
one column to the output table.

Each item is either

A column name
SELECT employeeNumber FROM...
SELECT E.employeeNumber FROM...
SELECT Employees.employeeNumber FROM...

An expression involving column names
SELECT unitPrice * quantity FROM...
SELECT CONCAT(firstName, lastName) FROM...

Gordon Royle (UWA) Introduction 5 / 16

Columns (1) - cont

An aggregate function (usually with GROUP BY)
SELECT name, COUNT(*) FROM...
SELECT name, MIN(mark) FROM...

A value that can be immediately evaluated
SELECT 2+3;
SELECT SIN(1);
SELECT POW(2,4);

Any of the above, renamed
SELECT unitPrice * quantity AS orderPrice FROM...

Gordon Royle (UWA) Introduction 6 / 16

FROM (2)

The FROM clause defines a table — conceptually, this is the “master table”
from which everything else is calculated. This clause can be

The name of an actual table
...FROM employees...
...FROM employees E...

A JOIN of two or more actual tables
...FROM Student, Enrolled ...
...FROM Student, Enrolled, Unit...
...FROM Student S, Enrolled E ON S.id = E.id...
...FROM Student S, Enrolled E USING (id)...
...FROM Student NATURAL JOIN Enrolled...
...FROM Student LEFT OUTER JOIN Enrolled...
...FROM Student, Enrolled WHERE...

Gordon Royle (UWA) Introduction 7 / 16

FROM (2) - cont

A derived table
...FROM

(SELECT * FROM Store
WHERE postCode = 6009) AS localStore ...

All derived table must be given an alias, even if it is never used.

This definition is recursive in that a derived table may itself use another
derived table (and so on).

Gordon Royle (UWA) Introduction 8 / 16

WHERE (3)

The WHERE clause is a boolean expression (that is, a true/false expression)
that is applied to every row of the “master-table” in turn. Only the rows for
which the expression is true are kept.

The WHERE clause can be

A test for equality
...WHERE employeeNumber = 1002...
...WHERE gender = ’M’...
...WHERE DAYOFWEEK(salesDate) = 0...

A test for inequality
...WHERE employeeNumber <> 1002...
...WHERE countryCode <> ’GBR’...

Gordon Royle (UWA) Introduction 9 / 16

WHERE (3) - cont

A comparison
...WHERE csMark < mathMark...
...WHERE YEAR(dateOfBirth) < 1995...

A compound boolean expression
... WHERE csMark < mathMark

AND csMark > 50...

... WHERE NOT (csMark < 50 OR mathMark < 50)...

The operators are

AND, && Logical AND
OR, || Logical OR
NOT, ! Logical Negation
XOR Logical exclusive-OR

Gordon Royle (UWA) Introduction 10 / 16

WHERE (3) - cont

Membership or non-membership
...WHERE id IN (1,5,8,12)...
...WHERE id NOT IN (SELECT id FROM...)

Existence or non-existence1

(This can only be illustrated with a complete statement)
FROM Country C
WHERE NOT EXISTS (SELECT *

FROM Country C1
WHERE C1.population > C.population);

1We have not covered this
Gordon Royle (UWA) Introduction 11 / 16

GROUP BY

The GROUP BY statement forms the surviving rows into groups in such a
way the rows in each group have the same value on all of the named columns.

One or more columns
...GROUP BY gender...
...GROUP BY region...
...GROUP BY unitCode, gender...

Gordon Royle (UWA) Introduction 12 / 16

GROUP BY - cont

Some data from Country grouped by region

Australia	18886000	Australia and New Zealand
Cocos (Keeling) Islands	600	Australia and New Zealand
Christmas Island	2500	Australia and New Zealand
Norfolk Island	2000	Australia and New Zealand
New Zealand	3862000	Australia and New Zealand
Latvia	2424200	Baltic Countries
Lithuania	3698500	Baltic Countries
Estonia	1439200	Baltic Countries
United Kingdom	59623400	British Islands
Ireland	3775100	British Islands

Gordon Royle (UWA) Introduction 13 / 16

GROUP BY - cont

The expressions in the SELECT statement are then evaluated over each group,
producing one summary row per group.

SELECT region, SUM(POPULATION) FROM...

SQL then takes from each group

The value for region from the first row

The sum of the population values from each group

Gordon Royle (UWA) Introduction 14 / 16

HAVING

The HAVING clause is another round of selection, but this time on the
summary rows produced by the previous step.

The additional conditions are based on the column names as determined by
the SELECT statement.

SELECT region,
SUM(population)

FROM Country
GROUP BY region
HAVING SUM(population) > 100000000;
+---------------------------+-----------------+
| region | sum(population) |
+---------------------------+-----------------+
Central America	135221000
Eastern Africa	246999000
Eastern Asia	1507328000

Gordon Royle (UWA) Introduction 15 / 16

ORDER BY

The final (optional) step is to sort the rows into a sensible order if desired.

Unless instructed to do so, MySQL will not sort the rows into any particular
order — this is because sorting is a computationally expensive operation.

SELECT region,
Sum(population)

FROM country
GROUP BY region
HAVING Sum(population) > 100000000
ORDER BY Sum(population) DESC;

ORDER BY sorts the data in ascending order (i.e. from low to high)
according to the values in the specified column. Specifying DESC reverses the
order so that the rows are sorted in descending order.

Gordon Royle (UWA) Introduction 16 / 16

