
Relational Algebra

Gordon Royle

School of Mathematics & Statistics
University of Western Australia

Gordon Royle (UWA) Relational Algebra 1 / 86

Relational Algebra

The theory underlying relational databases is called relational algebra, which
is (unsurprisingly) the study of the algebra of relations — think of the word
algebra as meaning symbolic manipulation.

Solving equations like 2 + 3x = 12y is algebra where the variables, x and y,
are numbers, but in relational algebra, the “variables” are relations!

This content is covered in Jennifer Widom’s “mini-course”

Databases: DB4 Relational Algebra

from Coursera (https://www.coursera.org).

Gordon Royle (UWA) Relational Algebra 2 / 86

https://www.coursera.org

Relations

If you open any introductory book on Pure Mathematics, you will find a
definition such as this:

DEFINITION: A relation of arity n is a subset

S ⊆ A1 × A2 × · · · × An

where
A1 × A2 × · · · × An

denotes the Cartesian product of the sets A1, A2, . . ., An.

Gordon Royle (UWA) Relational Algebra 3 / 86

Sets

We won’t be too formal about sets — essentially a set is an unordered
collection of “objects” with no repeats.

A set of numbers
A = {1, 2, 3, 4, 5}

A set of colours
B = {red, blue, green}

A set of names
C = {Alice,Bob,Chloë}

Gordon Royle (UWA) Relational Algebra 4 / 86

Cartesian product

The Cartesian product of two sets S and T is the set

S× T = {(s, t) : s ∈ S, t ∈ T}.

More informally, S× T is the set of 2-tuples such that the first component is
from S, and the second component is from T .

For tuples, the order does matter.

Gordon Royle (UWA) Relational Algebra 5 / 86

Some examples

Using our earlier examples, if

A = {1, 2, 3, 4, 5} B = {red, blue, green}

then

A× B ={(1, red), (2, red), (3, red), (4, red), (5, red)

(1, blue), (2, blue), (3, blue), (4, blue), (5, blue)

(1, green), (2, green), (3, green), (4, green), (5, green)}

Gordon Royle (UWA) Relational Algebra 6 / 86

Databases

How does all this relate to Databases?

Each type can be viewed as a set — namely the set of all legal values of that
particular type.

For example, the type INT is the set consisting of all integers (i.e. whole
numbers) x such that

−2147483648 ≤ x ≤ 2147483647.

In other words, you can store any whole number between these bounds in a
column of type INT, and nothing else.

Gordon Royle (UWA) Relational Algebra 7 / 86

A 2-column table

Suppose we have a table with two columns, similar to Country:

+------+------------+
| Code | Population |
+------+------------+
ABW	103000
AFG	22720000
AGO	12878000
AIA	8000
..

The set of all legal values for Code is all 3-character strings

{AAA,AAB,AAC, . . . ,ZZZ}

and the set of all legal values for Population is a range of numbers.

Gordon Royle (UWA) Relational Algebra 8 / 86

The Cartesian product

The Cartesian product of the two sets CHAR(3) and INT is then all the
possible tuples that form legitimate rows for the relation.

(AAA, 1)
(AAA, 2)
.
.
.
(ZZZ, 2147483647)

At any given moment, the actual set of rows — that is, the instance of the
relation — will be a subset of the Cartesian product, namely the collection of
the legitimate tuples currently contained by the table.

Gordon Royle (UWA) Relational Algebra 9 / 86

Higher arity

A relation of arity 2 is called a binary relation.

If there are more than 2 sets, say A, B and C, then we define the Cartesian
product in the natural way as the set of triples

A× B× C = {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}.

A relationship of arity 3 is sometimes called a ternary relation, and so on, but
eventually the individual names run out.

Gordon Royle (UWA) Relational Algebra 10 / 86

Example relations

Consider a relation Student with three attributes

id of type CHAR(8)

name of type VARCHAR(64)

gender of type ENUM("M", "F", "X")

and a relation Grade also with three attributes

id of type CHAR(8)

unit of type CHAR(8)

grade of type INT

Gordon Royle (UWA) Relational Algebra 11 / 86

Example relations

id name gender
12345678 Ebenezer Scrooge M
12345682 Jane Austen F
12345689 Martin Chuzzlewit M

id unit grade
12345678 CITS1402 88
12345678 CITS2211 75
12345682 CITS1402 91
12345682 CITS2211 71
12345689 CITS1402 55

Gordon Royle (UWA) Relational Algebra 12 / 86

Two Greek Symbols

Mathematics (and theoretical computer science) make heavy use of the Greek
alphabet, and we need two symbols in particular — “sigma” and “pi”.

The lower-case versions of these two symbols are

σ π

while the upper-case versions are

Σ Π

Gordon Royle (UWA) Relational Algebra 13 / 86

Relational Algebra

Relational algebra is the mathematical language describing the manipulation
of relations, while SQL is an approximation to relational algebra.

There are two fundamental operators:

Selection denoted by σ (sigma)
This operator selects a subset of the rows satisfying some condition

Projection denoted by π (pi)
This operator projects the tuples onto a subset of the columns

Gordon Royle (UWA) Relational Algebra 14 / 86

Terminology warning

In SQL the keyword SELECT is used to specify which columns to be output
— this is what the projection operator π does in relational algebra.

In SQL the keyword WHERE is used to specify which rows are to be processed
— this is what the selection operator σ does in relational algebra.

Purpose In SQL In rel. alg
Choose cols SELECT π
Choose rows WHERE σ

Gordon Royle (UWA) Relational Algebra 15 / 86

Selection

If R is a relation instance and c is a boolean condition (i.e. an expression that
is either true or false) then the value of the expression

σc(R)

is the relation containing only the rows of R that satisfy the condition c.

Sometimes, expressions leave off brackets if they are not necessary

σc R

(This is like writing cos x instead of cos(x).)

Gordon Royle (UWA) Relational Algebra 16 / 86

Selection

Consider the relational algebra expression:

σgrade>80 (Grade)

This should be viewed as a function applied to the relation Grade whose
value is another relation.

id unit grade
12345678 CITS1402 88
12345678 CITS2211 75
12345682 CITS1402 91
12345682 CITS2211 71
12345689 CITS1402 55

Gordon Royle (UWA) Relational Algebra 17 / 86

Projection

Now consider the expression

πid (Student)

This goes through each row, and only keeps the specified columns.

The result is another relation with fewer columns but — in this case — the
same number of rows.

id
12345678
12345682
12345689

Gordon Royle (UWA) Relational Algebra 18 / 86

MySQL - CREATE TABLE

First we create the (empty) tables:

CREATE TABLE Student (id CHAR(8),
name VARCHAR(64),
gender ENUM("M","F","X"));

CREATE TABLE Grade (id CHAR(8),
unit CHAR(8),
grade INT);

Gordon Royle (UWA) Relational Algebra 19 / 86

MySQL - INSERT INTO

Next we insert the initial data:

INSERT INTO Student VALUES(’12345678’, ’Ebenezer Scrooge’, ’M’);
INSERT INTO Student VALUES(’12345682’, ’Jane Austen’, ’F’);
INSERT INTO Student VALUES(’12345689’, ’Martin Chuzzlewit’, ’M’);

INSERT INTO Grade VALUES(’12345678’, ’CITS1402’, 88);
INSERT INTO Grade VALUES(’12345678’, ’CITS2211’, 75);
INSERT INTO Grade VALUES(’12345682’, ’CITS1402’, 91);
INSERT INTO Grade VALUES(’12345682’, ’CITS2211’, 71);
INSERT INTO Grade VALUES(’12345689’, ’CITS1402’, 55);

Gordon Royle (UWA) Relational Algebra 20 / 86

MySQL - SELECT *

In relational algebra, an entire relation can be referred to just by its name:

Grade

In MySQL this is not a legal expression, and we must explicitly state that we
want all the columns from a table.

mysql> SELECT * from Grade;
+----------+----------+-------+
| id | unit | grade |
+----------+----------+-------+
12345678	CITS1402	88
12345678	CITS2211	75
12345682	CITS1402	91
12345682	CITS2211	71
12345689	CITS1402	55
+----------+----------+-------+
5 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 21 / 86

Selection in MySQL

In MySQL a selection is accomplished by adding a WHERE clause containing
the conditions.

SELECT *
FROM Grade
WHERE grade > 80;
+----------+----------+-------+
| id | unit | grade |
+----------+----------+-------+
| 12345678 | CITS1402 | 88 |
| 12345682 | CITS1402 | 91 |
+----------+----------+-------+
2 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 22 / 86

Projection in MySQL

In MySQL a projection is accomplished by explicitly listing the columns you
want to keep.

SELECT id
FROM Student;
+----------+
| id |
+----------+
| 12345678 |
| 12345682 |
| 12345689 |
+----------+
3 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 23 / 86

Select and Project in MySQL

In relational algebra we can combine operations

πid (σgrade>80 (Grade))

This first operation selects the rows with grade > 80 and the second then
projects onto the id column only.

SELECT id
FROM Grade
WHERE grade > 80;
+----------+
| id |
+----------+
| 12345678 |
| 12345682 |
+----------+
2 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 24 / 86

Relations are sets . . .

While MySQL approximates relational algebra, it doesn’t do it perfectly.

πid (Grade)

should produce

id
12345678
12345682
12345689

because a relation is defined to be a set of tuples, so repeats are not allowed.

Gordon Royle (UWA) Relational Algebra 25 / 86

. . . but not in MySQL . . .

mysql> SELECT id FROM Grade;
+----------+
| id |
+----------+
| 12345678 |
| 12345678 |
| 12345682 |
| 12345682 |
| 12345689 |
+----------+
5 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 26 / 86

. . . unless you force it

mysql> SELECT DISTINCT id FROM Grade;
+----------+
| id |
+----------+
| 12345678 |
| 12345682 |
| 12345689 |
+----------+
3 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 27 / 86

Boolean expressions

A expression like grade > 80 is called a Boolean expression because when
it is evaluated it takes the value true or false.

Boolean expressions can be combined using the AND and OR operators, which
are usually written ∧ and ∨ respectively.

In fancy Maths books,

AND (∧) is called conjunction,

OR (∨) is called disjunction.

The word Boolean and the phrase boolean algebra are named to honour
George Boole (1815–1864) who developed the idea of representing and
manipulating logical expressions symbolically.

Gordon Royle (UWA) Relational Algebra 28 / 86

Head’s letter

Suppose that the Head sends letters of congratulations to students who get
more than 80 in any unit, or more than 70 in CITS2211.

What relational algebra expression yields a relation containing just the
student ids for all students who should receive a letter?

Boolean expression to test if any grade is more than 80:

grade > 80

Boolean expression to test if a CITS2211 grade is more than 70:

(unit =′ CITS2211′) ∧ (grade > 70)

Gordon Royle (UWA) Relational Algebra 29 / 86

Head’s letter

Suppose that the Head sends letters of congratulations to students who get
more than 80 in any unit, or more than 70 in CITS2211.

What relational algebra expression yields a relation containing just the
student ids for all students who should receive a letter?

Boolean expression to test if any grade is more than 80:

grade > 80

Boolean expression to test if a CITS2211 grade is more than 70:

(unit =′ CITS2211′) ∧ (grade > 70)

Gordon Royle (UWA) Relational Algebra 29 / 86

Head’s letter

Suppose that the Head sends letters of congratulations to students who get
more than 80 in any unit, or more than 70 in CITS2211.

What relational algebra expression yields a relation containing just the
student ids for all students who should receive a letter?

Boolean expression to test if any grade is more than 80:

grade > 80

Boolean expression to test if a CITS2211 grade is more than 70:

(unit =′ CITS2211′) ∧ (grade > 70)

Gordon Royle (UWA) Relational Algebra 29 / 86

The final condition

The overall boolean expression is the AND of these two

(grade > 80) ∨
((
unit =′ CITS2211′

)
∧ (grade > 70)

)
Thus the relational algebra expression whose value is the relation consisting
of all the rows of Grade meeting this condition is

σ(grade>80)∨(grade>70∧unit=′CITS2211′) (Grade)

Gordon Royle (UWA) Relational Algebra 30 / 86

The final expression

The final expression that produces the desired relation is a projection of the
relation onto the id column

πid
(
σ(grade>80)∨(grade>70∧unit=′CITS2211′) (Grade)

)

Gordon Royle (UWA) Relational Algebra 31 / 86

In SQL

SELECT *
FROM Grade
WHERE (grade > 80) OR

(grade > 70 AND unit = ’CITS2211’);
+----------+----------+-------+
| id | unit | grade |
+----------+----------+-------+
12345678	CITS1402	88
12345678	CITS2211	75
12345682	CITS1402	91
12345682	CITS2211	71
+----------+----------+-------+
4 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 32 / 86

In SQL

SELECT id
FROM Grade
WHERE (grade > 80) OR

(grade > 70 AND unit = ’CITS2211’);
+----------+
| id |
+----------+
| 12345678 |
| 12345678 |
| 12345682 |
| 12345682 |
+----------+
4 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 33 / 86

In SQL

SELECT DISTINCT(id)
FROM Grade
WHERE (grade > 80) OR

(grade > 70 AND unit = ’CITS2211’);
+----------+
| id |
+----------+
| 12345678 |
| 12345682 |
+----------+
4 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 34 / 86

More columns

In relational algebra, the projection can pick out any number of columns

πid,name (Student)

SELECT id, name
FROM Student;
+----------+-------------------+
| id | name |
+----------+-------------------+
12345678	Ebenezer Scrooge
12345682	Jane Austen
12345689	Martin Chuzzlewit
+----------+-------------------+
3 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 35 / 86

Reminder - selection

The select operator σ selects rows of a table (inlcuding the header).

Gordon Royle (UWA) Relational Algebra 36 / 86

Reminder - Projection

The project operator π selects columns of a table, including the header.

Gordon Royle (UWA) Relational Algebra 37 / 86

Products and Joins

The Cartesian product of relational algebra

Student× Grade

creates a new relation with 6 attributes, namely

id, name, gender, id, unit, grade

and with 3× 5 = 15 rows obtained by gluing together a tuple from Student
and a tuple from Grade in every possible way.

Gordon Royle (UWA) Relational Algebra 38 / 86

Cartesian product in MySQL

mysql> SELECT * FROM Student, Grade;
+----------+-------------------+--------+----------+----------+-------+
| id | name | gender | id | unit | grade |
+----------+-------------------+--------+----------+----------+-------+
12345678	Ebenezer Scrooge	M	12345678	CITS1402	88
12345682	Jane Austen	F	12345678	CITS1402	88
12345689	Martin Chuzzlewit	M	12345678	CITS1402	88
12345678	Ebenezer Scrooge	M	12345678	CITS2211	75
12345682	Jane Austen	F	12345678	CITS2211	75
12345689	Martin Chuzzlewit	M	12345678	CITS2211	75
12345678	Ebenezer Scrooge	M	12345682	CITS1402	91
12345682	Jane Austen	F	12345682	CITS1402	91
12345689	Martin Chuzzlewit	M	12345682	CITS1402	91
12345678	Ebenezer Scrooge	M	12345682	CITS2211	71
12345682	Jane Austen	F	12345682	CITS2211	71
12345689	Martin Chuzzlewit	M	12345682	CITS2211	71
12345678	Ebenezer Scrooge	M	12345689	CITS1402	55
12345682	Jane Austen	F	12345689	CITS1402	55
12345689	Martin Chuzzlewit	M	12345689	CITS1402	55
+----------+-------------------+--------+----------+----------+-------+
15 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 39 / 86

Matching them up

What we really want is for each row to combine the Student information
and the Grade information for the same student.

In relational algebra

σStudent.id=Grade.id (Student× Grade)

This forms the Cartesian product, and then selects only the rows where the
two occurrences of id match.

Gordon Royle (UWA) Relational Algebra 40 / 86

Matching in MySQL

SELECT *
FROM Student, Grade
WHERE Student.id = Grade.id;
+----------+-------------------+--------+----------+----------+-------+
| id | name | gender | id | unit | grade |
+----------+-------------------+--------+----------+----------+-------+
12345678	Ebenezer Scrooge	M	12345678	CITS1402	88
12345678	Ebenezer Scrooge	M	12345678	CITS2211	75
12345682	Jane Austen	F	12345682	CITS1402	91
12345682	Jane Austen	F	12345682	CITS2211	71
12345689	Martin Chuzzlewit	M	12345689	CITS1402	55
+----------+-------------------+--------+----------+----------+-------+
5 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 41 / 86

Natural Join

In relational algebra, the natural join operator automatically matches all
columns with the same name, and then removes one of each duplicate pair.

The symbol for a natural join is the “bowtie” symbol

./

So if R and S are relations, then

R ./ S

denotes their natural join.

Gordon Royle (UWA) Relational Algebra 42 / 86

Sample natural join

Therefore, in relational algebra

Student ./ Grade

yields a relation with five columns.

Gordon Royle (UWA) Relational Algebra 43 / 86

In MySQL

SELECT *
FROM Student NATURAL JOIN Grade;
+----------+-------------------+--------+----------+-------+
| id | name | gender | unit | grade |
+----------+-------------------+--------+----------+-------+
12345678	Ebenezer Scrooge	M	CITS1402	88
12345678	Ebenezer Scrooge	M	CITS2211	75
12345682	Jane Austen	F	CITS1402	91
12345682	Jane Austen	F	CITS2211	71
12345689	Martin Chuzzlewit	M	CITS1402	55
+----------+-------------------+--------+----------+-------+
5 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 44 / 86

The rename operator

Relational algebra also has an operator ρ (rho) for renaming tables and
attributes.

The syntax of this operator is not fully standardised, so you may see a number
of variations, but we’ll stick to one of the simplest.

Suppose that R is a relation with attributes r1, r2, . . ., rn. Then the value of the
expression

ρS(s1,s2,...,sn) (R)

is a relation called S with attributes s1, s2, . . ., sn but with exactly the same
contents as R.

Gordon Royle (UWA) Relational Algebra 45 / 86

Renaming

r1 r2 r3 r4

R

ρS(s1,s2,...,sn) (R)

s1 s2 s3 s4

S

Gordon Royle (UWA) Relational Algebra 46 / 86

Why do we need rename?

Renaming is mostly for convenience, but it is essential for self-joins — this is
when a table is joined to (another copy of) itself.

For example, suppose we want to find the students who have grades for more
than one unit.

(This can be done by using some of the “counting operators” of MySQL but
we’ll do it with joins first.)

Gordon Royle (UWA) Relational Algebra 47 / 86

Self-joins

We really need to analyse two distinct rows of the Grade table, but we can’t
do this because SQL is a “row-processing machine”.

So we have to convert “two distinct rows” to “a single row of twice the size”.

mysql> SELECT * FROM Grade, Grade;
ERROR 1066 (42000): Not unique table/alias: ’Grade’

Gordon Royle (UWA) Relational Algebra 48 / 86

Self-joins

We’ll rename each copy of the table.

SELECT *
FROM Grade G1, Grade G2;
+----------+----------+-------+----------+----------+-------+
| id | unit | grade | id | unit | grade |
+----------+----------+-------+----------+----------+-------+
12345678	CITS1402	88	12345678	CITS1402	88
12345678	CITS2211	75	12345678	CITS1402	88
12345682	CITS1402	91	12345678	CITS1402	88
12345682	CITS2211	71	12345678	CITS1402	88
12345689	CITS1402	55	12345678	CITS1402	88
12345678	CITS1402	88	12345678	CITS2211	75
...					
12345689	CITS1402	55	12345689	CITS1402	55
+----------+----------+-------+----------+----------+-------+
25 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 49 / 86

Self-joins

But now we have to fix the usual JOIN problem that the two halves
sometimes make no sense.

SELECT *
FROM Grade G1, Grade G2
WHERE G1.id = G2.id;
+----------+----------+-------+----------+----------+-------+
| id | unit | grade | id | unit | grade |
+----------+----------+-------+----------+----------+-------+
| 12345678 | CITS1402 | 88 | 12345678 | CITS1402 | 88 |
| 12345678 | CITS2211 | 75 | 12345678 | CITS1402 | 88 |
| 12345678 | CITS1402 | 88 | 12345678 | CITS2211 | 75

Gordon Royle (UWA) Relational Algebra 50 / 86

Self-joins

Each row should refer to enrolments in two different units.

SELECT *
FROM Grade G1, Grade G2
WHERE G1.id = G2.id

AND G1.unit <> G2.unit;
+----------+----------+-------+----------+----------+-------+
| id | unit | grade | id | unit | grade |
+----------+----------+-------+----------+----------+-------+
12345678	CITS2211	75	12345678	CITS1402	88
12345678	CITS1402	88	12345678	CITS2211	75
12345682	CITS2211	71	12345682	CITS1402	91
12345682	CITS1402	91	12345682	CITS2211	71
+----------+----------+-------+----------+----------+-------+
4 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 51 / 86

Self-joins

Now we can pull out just what we want.

SELECT DISTINCT G1.id AS overloaded
FROM Grade G1, Grade G2
WHERE G1.id = G2.id

AND G1.unit <> G2.unit;
+------------+
| overloaded |
+------------+
| 12345678 |
| 12345682 |
+------------+

Gordon Royle (UWA) Relational Algebra 52 / 86

A small peek ahead

Relational algebra is relation-closed — the result of any expression involving
relations is a relation itself.

This means that wherever a relation occurs in an expression, the relation can
be a derived relation rather than an actual relation.

Similarly in SQL, a table used in a query need not be an actual table, but can
instead be the result of another query.

Gordon Royle (UWA) Relational Algebra 53 / 86

Names of overloaded students

SELECT *
FROM student S,

(SELECT DISTINCT G1.id AS overloaded
FROM grade G1,

grade G2
WHERE G1.id = G2.id

AND G1.unit <> G2.unit) AS T
WHERE S.id = T.overloaded;
+----------+------------------+--------+------------+
| id | name | gender | overloaded |
+----------+------------------+--------+------------+
| 12345678 | Ebenezer Scrooge | M | 12345678 |
| 12345682 | Jane Austen | F | 12345682 |
+----------+------------------+--------+------------+
2 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 54 / 86

Set notation

Recall some basic set theory terminology:

If A and B are sets, then

The union of A and B, denoted A ∪ B is the set containing everything that
is in either A or B (or both).

The intersection of A and B, denoted A ∩ B is the set containing
everything that is in both A and B.

The set difference of A and B, denoted A− B is the set containing
everything that is in A but not in B.

Gordon Royle (UWA) Relational Algebra 55 / 86

In-class examples

Consider the following conceptual schema that is related to a boat-rental
operation.

sid

name

age

Sailor

bid

bname

colour

Boatdate

Reserves

This example is based on one in the book Database Management Systems by
Ramakrishnan & Gehrke.

Gordon Royle (UWA) Relational Algebra 56 / 86

Sample Boat

mysql> SELECT * FROM Boat;
+-----+-----------+--------+
| bid | name | colour |
+-----+-----------+--------+
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red
+-----+-----------+--------+
4 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 57 / 86

Sample Sailor

mysql> SELECT * FROM Sailor;
+-----+---------+------+
| sid | sname | age |
+-----+---------+------+
22	Dustin	45
29	Brutus	33
31	Lubber	55.5
32	Andy	25.5
58	Rusty	35
64	Horatio	35
71	Zorba	16
74	Horatio	36
85	Art	25.5
95	Bob	63.5
+-----+---------+------+
10 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 58 / 86

Sample Reserves

mysql> SELECT * FROM Reserves;
+-----+-----+------------+
| sid | bid | date |
+-----+-----+------------+
22	101	2014-08-10
22	102	2014-08-10
22	103	2014-08-11
22	104	2014-08-12
31	102	2014-08-02
31	103	2014-08-03
31	104	2014-08-17
64	102	2014-08-18
64	102	2014-08-05
74	103	2014-08-05
+-----+-----+------------+
10 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 59 / 86

Simple expressions

πsid (Sailor)

SELECT sid
FROM Sailor;
+-----+
| sid |
+-----+
| 22 |
| 29 |
| 31 |
| 32 |
| 58 |
| 64 |
| 71 |
| 74 |
| 85 |
| 95 |
+-----+
10 rows in set (0.01 sec)

Gordon Royle (UWA) Relational Algebra 60 / 86

Simple expressions

πsid (Sailor)

SELECT sid
FROM Sailor;
+-----+
| sid |
+-----+
| 22 |
| 29 |
| 31 |
| 32 |
| 58 |
| 64 |
| 71 |
| 74 |
| 85 |
| 95 |
+-----+
10 rows in set (0.01 sec)

Gordon Royle (UWA) Relational Algebra 60 / 86

Queries in relational algebra

What are the names of sailors who have reserved boat 103?

Which tables contain the information?
The names of sailors are only in Sailor, so we have to use this table.
The boat ids are in both Reserves and Boat so we can use one or
both of these.

Determine which joins are needed
We can create a table with names and reservation details by joining
Sailor with Reserves.

Gordon Royle (UWA) Relational Algebra 61 / 86

Doing the join

What kind of join should be done?

Sailor(sid, sname, age)

Reserves(sid, bid, date)

We need to “line up” Sailor.sid with Reserves.sid - as this is the
only attribute in common, we can use the natural join:

Sailor ./ Reserves

Gordon Royle (UWA) Relational Algebra 62 / 86

Natural Join 1

sid name age

Sailor

sid bid

Reserves

Gordon Royle (UWA) Relational Algebra 63 / 86

Natural join 2

At a logical level, the natural join first forms the Cartesian product:

sid name age

Sailor

sid bid

Reserves

sid name age sid bid

Gordon Royle (UWA) Relational Algebra 64 / 86

Natural join 2

At a logical level, the natural join first forms the Cartesian product:

sid name age

Sailor

sid bid

Reserves

sid name age sid bid

Gordon Royle (UWA) Relational Algebra 64 / 86

Natural join 2

At a logical level, the natural join first forms the Cartesian product:

sid name age

Sailor

sid bid

Reserves

sid name age sid bid

Gordon Royle (UWA) Relational Algebra 64 / 86

Natural join 2

At a logical level, the natural join first forms the Cartesian product:

sid name age

Sailor

sid bid

Reserves

sid name age sid bid

Gordon Royle (UWA) Relational Algebra 64 / 86

Matching columns

Then rows are discarded unless they agree on every column with the same
name from the two tables.

sid name age sid bid

Gordon Royle (UWA) Relational Algebra 65 / 86

And finally

Finally, the duplicate column(s) are removed

sid name age sid bid

Gordon Royle (UWA) Relational Algebra 66 / 86

In SQL

SELECT *
FROM Sailor

NATURAL JOIN Reserves;
+-----+---------+------+-----+------------+
| sid | sname | age | bid | date |
+-----+---------+------+-----+------------+
22	Dustin	45	101	2014-08-10
22	Dustin	45	102	2014-08-10
22	Dustin	45	103	2014-08-11
22	Dustin	45	104	2014-08-12
31	Lubber	55.5	102	2014-08-02
31	Lubber	55.5	103	2014-08-03
31	Lubber	55.5	104	2014-08-17
64	Horatio	35	102	2014-08-18
64	Horatio	35	102	2014-08-05
74	Horatio	36	103	2014-08-05
+-----+---------+------+-----+------------+
10 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 67 / 86

In SQL

SELECT *
FROM Sailor

JOIN Reserves USING (sid);
+-----+---------+------+-----+------------+
| sid | sname | age | bid | date |
+-----+---------+------+-----+------------+
22	Dustin	45	101	2014-08-10
22	Dustin	45	102	2014-08-10
22	Dustin	45	103	2014-08-11
22	Dustin	45	104	2014-08-12
31	Lubber	55.5	102	2014-08-02
31	Lubber	55.5	103	2014-08-03
31	Lubber	55.5	104	2014-08-17
64	Horatio	35	102	2014-08-18
64	Horatio	35	102	2014-08-05
74	Horatio	36	103	2014-08-05
+-----+---------+------+-----+------------+
10 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 68 / 86

The rest of the query

With the join done, we can now extract the rows that we want, namely those
rows that correspond to boat number 103.

In relational algebra, this is a selection

σbid=103(Reserves ./ Sailor),

and finally we just want the names only, which is a projection:

πsname(σbid=103(Reserves ./ Sailor)).

Gordon Royle (UWA) Relational Algebra 69 / 86

In SQL

What SQL is logically the same as

πsname(σbid=103(Reserves ./ Sailor))

SELECT sname
FROM Reserves

NATURAL JOIN Sailor
WHERE bid = 103;
+---------+
| sname |
+---------+
| Dustin |
| Lubber |
| Horatio |
+---------+

Gordon Royle (UWA) Relational Algebra 70 / 86

Another way

There is usually more than one expression that will yield the same output.

This expression

πsname(σbid=103(Reserves) ./ Sailor)

has the same value as our earlier expression for all instances of the relations.

Gordon Royle (UWA) Relational Algebra 71 / 86

In SQL

What SQL is logically the same as

πsname(σbid=103(Reserves) ./ Sailor)

SELECT sname
FROM (SELECT *

FROM Reserves
WHERE bid = 103) AS T
NATURAL JOIN Sailor;

+---------+
| sname |
+---------+
| Dustin |
| Lubber |
| Horatio |
+---------+

Gordon Royle (UWA) Relational Algebra 72 / 86

A common error

SELECT sname
FROM (SELECT *

FROM Reserves
WHERE bid = 103)
NATURAL JOIN Sailor;

ERROR 1248 (42000): Every derived table must have its own alias

Even if the name is not used, MySQL insists that you name every derived
table.

Gordon Royle (UWA) Relational Algebra 73 / 86

Queries

Example

Find the names of the sailors who have reserved a red boat

πsname((σcolour=′red′Boat) ./ Reserves ./ Sailor)

This expression can be parsed as follows:

First select the rows corresponding to red boats from Boat.

Next form the natural join of that table with Reserves to find all the
information about reservations involving red boats.

Then form the natural join of that relation with Sailor to join the
personal information about the sailors.

Finally project out the sailor’s name.

Gordon Royle (UWA) Relational Algebra 74 / 86

Queries

Example

Find the names of the sailors who have reserved a red boat

πsname((σcolour=′red′Boat) ./ Reserves ./ Sailor)

This expression can be parsed as follows:

First select the rows corresponding to red boats from Boat.

Next form the natural join of that table with Reserves to find all the
information about reservations involving red boats.

Then form the natural join of that relation with Sailor to join the
personal information about the sailors.

Finally project out the sailor’s name.

Gordon Royle (UWA) Relational Algebra 74 / 86

Queries

Step 1

We can execute this step-by-step in MySQL to see what happens:

σcolour=′red′Boat

SELECT *
FROM Boat
WHERE colour = ’red’;
+-----+-----------+--------+
| bid | name | colour |
+-----+-----------+--------+
| 102 | Interlake | red |
| 104 | Marine | red |
+-----+-----------+--------+
2 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 75 / 86

Queries

Step 2

(σcolour=′red′boat) ./ Reserves

SELECT *
FROM (SELECT *

FROM Boat
WHERE colour = ’red’) AS RedBoats
NATURAL JOIN Reserves;

+-----+-----------+--------+-----+------------+
| bid | name | colour | sid | date |
+-----+-----------+--------+-----+------------+
102	Interlake	red	22	2014-08-10
102	Interlake	red	31	2014-08-02
102	Interlake	red	64	2014-08-18
102	Interlake	red	64	2014-08-05
104	Marine	red	22	2014-08-12
104	Marine	red	31	2014-08-17
+-----+-----------+--------+-----+------------+
6 rows in set (0.00 sec)

Gordon Royle (UWA) Relational Algebra 76 / 86

Queries

Step 3

(σcolour=′red′Boat) ./ Reserves ./ Sailor

SELECT *
FROM (SELECT *

FROM Boat
WHERE colour = ’red’) AS RedBoats
NATURAL JOIN Reserves
NATURAL JOIN Sailor;

+-----+-----------+--------+-----+------------+---------+------+
| bid | name | colour | sid | date | sname | age |
+-----+-----------+--------+-----+------------+---------+------+
102	Interlake	red	22	2006-08-10	Dustin	45
104	Marine	red	22	2006-08-12	Dustin	45
102	Interlake	red	31	2006-08-02	Lubber	55.5
104	Marine	red	31	2006-08-17	Lubber	55.5
102	Interlake	red	64	2006-08-18	Horatio	35
102	Interlake	red	64	2006-08-05	Horatio	35
+-----+-----------+--------+-----+------------+---------+------+

Gordon Royle (UWA) Relational Algebra 77 / 86

Queries

Finally

πsname((σcolour=′red′Boat) ./ Reserves ./ Sailor)

SELECT DISTINCT sname
FROM (SELECT *

FROM Boat
WHERE colour = ’red’) AS RedBoats
NATURAL JOIN Reserves
NATURAL JOIN Sailor;

+---------+
| sname |
+---------+
| Dustin |
| Lubber |
| Horatio |
+---------+

Gordon Royle (UWA) Relational Algebra 78 / 86

Queries

Example

Find the names of the sailors who have hired a red or a green boat

ρ(Tempboat, σcolour=′red′∨colour=′green′Boat)

πsname(Tempboat ./ Reserves ./ Sailor)

Gordon Royle (UWA) Relational Algebra 79 / 86

Queries

In MySQL

We can perform this process exactly like this in MySQL if desired, but at the
expense of creating a new table.

CREATE TEMPORARY TABLE Tempboat LIKE boat;

INSERT INTO Tempboat
(SELECT *
FROM Boat
WHERE colour = ’red’

OR colour = ’green’);

SELECT DISTINCT S.sname
FROM Tempboat

NATURAL JOIN Reserves
NATURAL JOIN Sailor S;

Gordon Royle (UWA) Relational Algebra 80 / 86

Queries

A different way

An alternative in this case is to find the sailors who have used red boats and
green boats in two separate queries, and then use the set union operator to
combine the two sets of names.

πsname((σcolour=′red′Boat) ./ Reserves ./ Sailor)

∪

πsname((σcolour=′green′Boat) ./ Reserves ./ Sailor)

Gordon Royle (UWA) Relational Algebra 81 / 86

Queries

In MySQL

An alternative in this case is to find the sailors who have used red boats and
green boats in two separate queries.

SELECT S.sname
FROM Boat B

NATURAL JOIN Reserves
NATURAL JOIN Sailor S

WHERE B.colour = ’red’
UNION
SELECT S.sname
FROM Boat B

NATURAL JOIN Reserves
NATURAL JOIN Sailor S

WHERE B.colour = ’green’;

Gordon Royle (UWA) Relational Algebra 82 / 86

Queries

A red boat AND a green boat

Things get more interesting (and difficult) when we try to answer

Which sailors have hired both a red boat and a green boat

We cannot just replace OR (∨) with AND (∧) to get

ρ(Tempboat, σcolour=′red′
∧

colour=′green′Boat)

πsname(Tempboat ./ Reserves ./ Sailor)

because this query returns no results — there are no boats that are both red
and green!

Gordon Royle (UWA) Relational Algebra 83 / 86

Queries

Intersection

In relational algebra we can frame this query quite naturally by using
intersection instead of union.

πsname((σcolour=′red′Boat) ./ Reserves ./ Sailor)

∩

πsname((σcolour=′green′Boat) ./ Reserves ./ Sailor)

Unfortunately, MySQL 5.7 does not support an INTERSECTION operator so
this cannot be translated directly into MySQL.

Gordon Royle (UWA) Relational Algebra 84 / 86

Queries

Two boats

A relational algebra query that can be translated directly into MySQL uses the
concept of two boats reserved by the same sailor.

ρ(R1, σsid,bid(σcolour=′red′Boat ./ Reserves))

ρ(R2, σsid,bid(σcolour=′green′Boat ./ Reserves))

πsname(Sailor ./ (σR1.sid=R2.sid (R1× R2)))

Here R1 is a list of “red-boat reservations” and R2 is a list of “green-boat
reservations”.
Why can’t we use R1 ./ R2?

Gordon Royle (UWA) Relational Algebra 85 / 86

Queries

In MySQL

This translates into MySQL as

SELECT DISTINCT S.sname
FROM Sailor S, Reserves R1, Reserves R2, Boat B1, Boat B2
WHERE R1.bid = B1.bid AND B1.colour = ’red’
AND R2.bid = B2.bid AND B2.colour = ’green’
AND R1.sid = S.sid AND R2.sid = S.sid;

We can view this query as finding two boat-reservations — (B1, R1)
proving that a red boat has been reserved, and (B2, R2) proving that a
green boat has been reserved, with the conditions on sid requiring the two
reservations to be by the same sailor.

Gordon Royle (UWA) Relational Algebra 86 / 86

	Queries

