
Databases - Juicd

Gordon Royle

School of Mathematics & Statistics
University of Western Australia

Gordon Royle (UWA) Juicd 1 / 19

ERD for Juicd

We have to identify the entities and relationships and then connect them
appropriately.

Some things are clearly entities, or clearly relationships, while others can be
modelled as either, and which you choose depends on which makes it most
natural to meet the requirements.

Due to the small page size, the diagrams only show the attributes the first time
entity set is described, and then they are omitted.

Gordon Royle (UWA) Juicd 2 / 19

Entities

Some things are clearly entities:

Customer

Employee

Outlet

Juice Ingredient

Non Juice Product

Gordon Royle (UWA) Juicd 3 / 19

Customers

jCardNum jPoints email

Customer

We need jPoints and email to accumulate Juicd points and send the email
newsletter, and the specs said that we could assume that everyone has a Juicd
card, and hence a unique number to identify them.

Gordon Royle (UWA) Juicd 4 / 19

Employees

jEmpId name address

Employee

Employees just need something to identify them – an employee number – and
probably we’d store their name and address as well.

Gordon Royle (UWA) Juicd 5 / 19

Outlets

jStoreId address phone

Outlet

Outlets just need any unique identifier — in this case we’re just using a made
up identifer.

Gordon Royle (UWA) Juicd 6 / 19

Working

Employees work at outlets for a percentage of their time, so this can only
really be represented by a relationship, with “percentage” as a relationship
attribute.

Outlet Employee

percent

worksAt

We could add participation constraints to indicate that every employee works
somewhere or that every outlet has some employees working there, but at the
moment we have no information on that.

Gordon Royle (UWA) Juicd 7 / 19

Managing

Managers can be modelled as a separate entity set, or as a relationship
between employees and departments.

From the examples in R&G, it seems that the relationship set is preferred.

Here we have some constraints, namely that each outlet has exactly one
manager, not 0, not more than 1.

Gordon Royle (UWA) Juicd 8 / 19

Managing

Outlet Employee

percent

worksAt

manages

Gordon Royle (UWA) Juicd 9 / 19

LineManager

If management is expressed as a relationship, then how can we insist that each
employee has a unique manager?

We’ll use an aggregate entity to represent a manager, namely an employee
managing an outlet is a manager.

This structure allows us to enforce the requirements in a natural way.

Gordon Royle (UWA) Juicd 10 / 19

Outlet Employee

worksAt

manages

lineMgr

Gordon Royle (UWA) Juicd 11 / 19

Non-juices

Non-juices are an entity set.

prodId pName perItem

NonJuice

Non-juices have a product id, a name, a per-item price. A typical row is:

(12, "Protein Ball", 3.00)

Gordon Royle (UWA) Juicd 12 / 19

Juices

Juices – or rather, the raw ingredients – form another entity set.

juiceId jName perMl

Juice

A typical row might be

(10, "Watermelon", 0.03)

Gordon Royle (UWA) Juicd 13 / 19

Juice Cups

A cup of juice consists of various juices, but also has its own attribute, namely
the size of the cup.

JuiceCup Juice

percentagecupSize

contains

Gordon Royle (UWA) Juicd 14 / 19

Order

An customer order has non-juice items and various juice-cups

Order

JuiceCup

OrderNonJ

hasJ

hasNJ

#

#

Juicectns

date

orderId

%cupSize

Gordon Royle (UWA) Juicd 15 / 19

The order process

What is an order? It is when a customer, at an outlet, places an order with an
employee.

So ideally all of these pieces of information should be stored in a single tuple
with four components — this means that the order is really a quaternary
relation.

However two of the four components are actually related already, because we
can’t just use any employee at any outlet, but rather only an employee who
actually works at the outlet. So this means we really want to relate a customer,
an order and an “employee-working-at-an-outlet”.

Gordon Royle (UWA) Juicd 16 / 19

The order

Luckily, this is exactly the purpose of an aggregate entity — this is dicussed in
detail in Section 2.5.4 of Ramakrishnan & Gehrke.

Customer Orderplaces

WorksAt

Gordon Royle (UWA) Juicd 17 / 19

Implementation

Implementation is when the ERD is translated to SQL; normally every entity
becomes a table, and most of the relationships become tables, although
relationships with key constraints and participation constraints can often be
represented via attributes.

For example, the manages relation might be implemented by having a
mgrId attribute in Outlet rather than having a separate table; this however
is an implementation detail and not part of the ERD.

Gordon Royle (UWA) Juicd 18 / 19

Integrity constraints

CREATE TABLE CustomerOrder(
orderID INT PRIMARY KEY,
jCardNum INT,
employeeID INT,
outletID INT,
date DATE,
FOREIGN KEY (jCardNum)

REFERENCES Customer(jCardNum),
FOREIGN KEY (employeeID, outletID)

REFERENCES worksAt(jEmpId, jStoreID));

Notice that the second foreign key constraint uses a compound key, namely a
key with 2 components, rather than a single attribute.

Gordon Royle (UWA) Juicd 19 / 19

