
Databases - Introduction

Gordon Royle

School of Mathematics & Statistics
University of Western Australia

Gordon Royle (UWA) Introduction 1 / 33



Introduction

What is data?

A datum is a single fact about some universe of discourse.

Jack Johnson has student number 20723081

Data is the plural of datum, hence refers to a collection of facts.

By itself, data has little use or meaning:
Information is the interpretation of data — attributing meaning to the
data.

As one writer has said:

Information is what you want; data is what you’ve got.

Gordon Royle (UWA) Introduction 2 / 33



Introduction

Databases

A database is an organized collection of data, often representing a model of
the activity of some business or other organization, large or small.

For example, a database might contain data about:
Students, Courses, Units and Grades
Customers, Products, Orders and Deliveries
Doctors, Patients, Prescriptions and Drugs
Students, Books, Periodicals and Loans

The fundamental role of database technology is to allow users, typically
organizational users, to extract information from their data.

Gordon Royle (UWA) Introduction 3 / 33



Introduction

Database Management Systems

A database management system (DBMS) is any system that allows users to
manage their data, although nowadays the term is used almost exclusively for
software rather than manual systems.

The amount of data that can be collected automatically is growing
exponentially, and so there is a strong demand for database professionals,
particularly database administrators (DBAs) who design, implement and
maintain databases.

There are many different types of DBMS, but relational database management
systems (RDBMS) have been the dominant paradigm for several decades.

Gordon Royle (UWA) Introduction 4 / 33



Introduction

An old-fashioned DBMS

Before computers became ubiquitous, libraries used card catalogue systems,
which are just manual databases.

There are many variations, but usually they would at least have:
A large card catalogue listing all books in the library
Check-out slips stored in little envelopes in each book
An “on loan” list formed from the check-out slips of the books on loan

Gordon Royle (UWA) Introduction 5 / 33



Introduction

An old-fashioned DBMS

A card catalogue consisted of wooden cabinets with large numbers of
drawers, each containing an index card relating to a single book.

The drawers, and cards, were alphabetically sorted, usually by author name,
to allow readers to find which titles the library stocks.
"2010 Manchester UK 4467481691" by Ricardo from Manchester, UK - Manchester Central Library, March 2010

Gordon Royle (UWA) Introduction 6 / 33



Introduction

Check-out cards

Each book had a little envelope with a checkout-card that was removed and
filled-in with the due-date and the borrower’s name, while the due-date was
stamped onto a slip of paper pasted into the book.

The check-out cards were stored in due-date order, allowing library staff to
quickly access the slips when books were returned, and to determine each day
which books had become overdue.

Gordon Royle (UWA) Introduction 7 / 33



Introduction

Features of this DB

Despite being manual, the library system nevertheless displays some of the
features of a modern database:

It had separate listings (catalogues) for books and borrowers with the
check-out cards forming a third list connecting specific books to specific
borrowers.

Each of the lists is sorted in order to permit rapid searches — in modern
terminology, we would say that the lists are indexed.

Gordon Royle (UWA) Introduction 8 / 33



Introduction

Why use a DBMS?

Many organisations can (and do) manage their data simply as a collection of
files on a shared file system.

Any user with sufficient file system privileges can search, open and edit the
files.

This is conceptually simple, but has many disadvantages in terms of
flexibility, reliability, scalability and data integrity.

A DBMS sits between the users and the data, and manages the interactions
between them.

Gordon Royle (UWA) Introduction 9 / 33



Introduction

The DB model

Physical data

DBMS

User5

User4

User3

User2

User1

Gordon Royle (UWA) Introduction 10 / 33



Introduction

What does a DBMS provide?

There is a free online course “Introduction to Databases” on Coursera
(coursera.org), presented by Jennifer Widom from Stanford University.

In this, she describes a DBMS as providing “efficient, reliable, convenient,
and safe multi-user storage of – and access to – massive amounts of persistent
data”.

(In general, the Coursera video lectures and supporting materials from this
course are a useful resource for this unit.)

Gordon Royle (UWA) Introduction 11 / 33



Introduction

In more detail

We’ll consider some of these in more detail.

Data Independence
Efficiency
Data Integrity
Data Administration
Concurrency Control
Application Development

Gordon Royle (UWA) Introduction 12 / 33



Introduction

Data Independence I

Data independence provides analogous benefits to the encapsulation found in
object-oriented programming languages:

Users and applications use a logical model of the underlying data, rather
than directly manipulating the physical files storing the data.
Implementation of physical storage can be altered or improved without
affecting client code.
Physical storage can be remote, or distributed, or both, with no alteration
in client code.

Gordon Royle (UWA) Introduction 13 / 33



Introduction

Data Independence II

If the user wants to know the name of the student with student number
22041020 then they ask the DBMS, using something like the following SQL
(Structured Query Language) command1.

SELECT name FROM Student WHERE snum = 22041020;

The user does not need to know where this information is stored, what
machine it is on, what files it is in and so on — the mechanics of locating and
extracting the information is left to the DBMS.

This is a declarative statement rather than an imperative statement — the user
is asking for the desired information, rather than telling the computer exactly
what to do.

1Do not worry if you do not understand this yet!
Gordon Royle (UWA) Introduction 14 / 33



Introduction

Efficiency

A DBMS can implement a number of storage strategies and optimizations to
make the most common operations as fast as possible.

In particular, the DBMS can maintain various indexes to the data to make
querying the database quick; the user can control which indexes are present,
but need not know how they are implemented.

Database storage and indexing strategies are extremely sophisticated
applications of data structures techniques.

Gordon Royle (UWA) Introduction 15 / 33



Introduction

Data Integrity

A critical role of a DBMS is to ensure that the entire collection of data is
maintained in a consistent state.

At its simplest, this means that each type of data should only be stored once
— if several parts of an organization use personal data about an employee,
and each stores that data separately, then it is difficult to enforce integrity.

More signficantly, a change in one data item often has a “ripple effect” of
consequences for data in other areas: a DBMS can ensure that all of these
consequences occur and disallow an operation that would leave the database
corrupt.

This is often described as the DBMS enforcing integrity constraints.

Gordon Royle (UWA) Introduction 16 / 33



Introduction

Data Administration

A DBMS allows the organization a fine degree of control over who is
permitted various levels of access to the database.

In most operating systems (Unix, Windows etc) users can either read an entire
file or none of it, but a DBMS can present different views of the same data to
different groups of users.

For example, a lecturer may be able to look up a student’s academic record,
but not their personal or financial details, while only certain staff will be able
to alter their academic record.

Gordon Royle (UWA) Introduction 17 / 33



Introduction

Concurrency Control

In a large organization, there will often be several people accessing the same
data item at the same time.

While this is not a problem if all users are simply viewing the data, it becomes
a major problem if some of the users need to update the data.

For example, an airline reservation system may have several travel agents
viewing availability at the same time, but the DBMS must prevent two agents
from booking the same seat at the same time.

Gordon Royle (UWA) Introduction 18 / 33



Introduction

Application Development

Analysing data may require more sophisticated and application-dependent
programs than a general-purpose DBMS can provide.

This can be accomplished by having a general purpose programming
language such as Java and C accessing the data through the DBMS and then
performing additional processing with the results.

This combination permits the developer to focus on the “business logic” of the
application.

The power and success of this form of application development can be seen
by the fact that essentially every large dynamic website is a database-backed
application.

Gordon Royle (UWA) Introduction 19 / 33



Introduction

A large subject

Each of the topics listed above has enough theory, practice and technology
associated with it to form an entire unit that could legitimately be called
Databases.

Ramakrishnan & Gehrke2 identify two major approaches:
Systems Emphasis

Building database systems — the nuts and bolts of storage, indexing,
query optimization, transaction management.
Applications Emphasis
Using database systems — data modelling, data query languages,
database-backed applications.

2http://pages.cs.wisc.edu/~dbbook/
Gordon Royle (UWA) Introduction 20 / 33

http://pages.cs.wisc.edu/~dbbook/


Introduction

This unit

We will take the applications emphasis covering

The relational data model
Database design using entity-relationship (ER) diagrams
SQL (the standard) and MySQL (the implementation)
Database use in practice
Database-backed applications

There are a number of different data models, but the relational model is the
most entrenched, developed and heavily used, so we will focus almost entirely
on that.

Gordon Royle (UWA) Introduction 21 / 33



Terminology

Terminology

Theoretically, the relational model is based on formal mathematical concepts,
so uses mathematical terminology in a precise way, e.g.

Relation, instance, tuple, attribute, field.

In practice, implementations of databases are only loosely based on the
formal model, so a more informal terminology is used, e.g.

Table, row, column, heading.

It is important to recognise both the formal terms and the informal terms!

Gordon Royle (UWA) Introduction 22 / 33



Terminology

Tables / relations

The table, or relation (the dark green words are the formal terms), is the
fundamental object manipulated by a relational database.

Here is a toy example of a table / relation called Book.

Author Title Date
Tolstoy Anna Karenina 1873
Steinbeck Cannery Row 1945
Wharton Ethan Frome 1911
Conrad Lord Jim 1900
Kerouac Big Sur 1962

This is a poorly-designed table, but we’ll dissect it to learn the terminology,
and sneak in some basic SQL commands as well.

Gordon Royle (UWA) Introduction 23 / 33



Terminology

Tables / Relations

In an RDBMS a table represents the objects or the relationships between
objects based on analysis of the application.

A table has
A name allowing the designer and user to refer to it
A header giving names to the columns, each of which has a specified type

Zero or more rows, each representing one object

Gordon Royle (UWA) Introduction 24 / 33



Terminology

The rows

Each row contains the data for one book title.

Author Title Date
Tolstoy Anna Karenina 1873
Steinbeck Cannery Row 1945
Wharton Ethan Frome 1911
Conrad Lord Jim 1900
Kerouac Big Sur 1962

The highlighted row refers to the book “Cannery Row” written by Steinbeck
and first published in 1945.

In the more formal language, a row is called a tuple.

Gordon Royle (UWA) Introduction 25 / 33



Terminology

The columns

The header of each column names a general property of the objects being
stored in the table.
A column of the table stores the values of these properties, one value per
object (i.e. per row).

Author Title Date
Tolstoy Anna Karenina 1873
Steinbeck Cannery Row 1945
Wharton Ethan Frome 1911
Conrad Lord Jim 1900
Kerouac Big Sur 1962

Thus each book has a publication date — a general property of books, but
each individual book has its own publication date, and so the value of this
attribute differs between books.

Gordon Royle (UWA) Introduction 26 / 33



Terminology

Attributes

The formal name for a “general property” is an attribute.

At the design stage, the database designer has to decide which attributes of
the objects need to be modelled (stored) — usually by thinking about the
real-life objects, and distinguishing the important from the unimportant.

For example, the following are all attributes of students — but which are
relevant to designing a table Student for a university database?

Name, Address, Date of Birth, Student Number
Height, Eye Colour, Favourite Movie, Nickname

Gordon Royle (UWA) Introduction 27 / 33



Terminology

Types I

Each attribute also has a type, which refers to the kind of values that can be
stored in that column.

Some common types are:
Various numeric types, including;
INT, BIGINT, FLOAT, DOUBLE
Various time-related types, including:
YEAR, DATE, DATETIME
Various text-related types, including:
CHAR, VARCHAR, TEXT
Various other special-purpose types, including
BLOB, ENUM, BINARY

If a column is declared to be of a particular type, then it can only be assigned
legitimate values of that type.

Gordon Royle (UWA) Introduction 28 / 33



Terminology

Types II

The different types are useful in several different ways:

They help the DBMS use storage efficiently by letting it know how much
space to allocate for all fixed-size types
For example, in MySQL, an INT occupies 4 bytes of space

They provide the first layer of protection of data integrity by avoiding
obvious data entry errors
For example, if a column has type DATE, then it will only accept only values
given in the correct format for a date.

The DBMS can interpret commands differently according to type
For example, the command that adds 1 to a value will use integer arithmetic for
an INT, but adds one day if the variable is of type DATE.

Gordon Royle (UWA) Introduction 29 / 33



Terminology

Tuples I

The number of columns of a particular relation (table) is known as the arity of
the relation. There are special words unary, binary and ternary relation for
relations of arity 1, 2 or 3 respectively.

The Book relation has arity 3, so each row is a 3-tuple, or an ordered triple.

Mathematically, a tuple is given as a comma-separated list of values between
brackets. Thus we can say that

(Dickens, David Copperfield, 1850)

is a legal tuple for the relation Book.

Gordon Royle (UWA) Introduction 30 / 33



Terminology

Tuples II

Some tuples are simply not legal, either because they have the wrong arity or
a component has the wrong type. So

(Dickens, 1850, David Copperfield)

is not a legal tuple because the third component does not represent a date, and

(Dickens, David Copperfield)

is not a legal tuple because it has the wrong arity.

On the other hand,

(Dickens, The Da Vinci Code, 2003)

is legal, but just incorrect.

Gordon Royle (UWA) Introduction 31 / 33



Terminology

A subtlety

It is sometimes necessary to distinguish between the contents of a table, and
the structure of the table, and for this, the more formal language is needed.

The structure of the table — that is, the names and types of the attributes
— is called the schema of the relation.
The schema of a relation is normally carefully designed and changes
infrequently, usually in response to some structural change in the business
environment

The contents of the table at any particular point in time is called an
instance of the relation
Under normal usage, rows may be added to a table, then altered and finally
deleted, and so the relation instance is frequently changing

Gordon Royle (UWA) Introduction 32 / 33



Terminology

Structured Query Language

Structured Query Language or SQL is an ISO standard specifying the syntax
and semantics of a declarative language for accessing a relational database.

Syntax — The syntax determines which statements are legal expressions
in the language
Semantics — The semantics determine the meaning of each of the legal
expressions

However there is no compulsion on any database vendor to stick precisely to
the standard, and so there are numerous “flavours” of SQL.

Every actual database system omits some SQL commands, but includes some
non-standard extensions.

Gordon Royle (UWA) Introduction 33 / 33


	Introduction
	Terminology

