
Databases - Data Integrity

Gordon Royle

School of Mathematics & Statistics
University of Western Australia

Gordon Royle (UWA) Data Integrity 1 / 30

Data Integrity

For most applications it is imperative that the database remain in a logically
consistent state, so there are a variety of mechanisms to help preserve data
integrity.

Next week, we will discuss the transactions mechanism, which is a very
low-level mechanism robust to genuinely unpredictable events, such as
system crashes and the actions of other users.

This helps maintain data integrity in several ways:

Transactions protect against system crashes half-way through a sequence
of statements reflecting a single logical operation

Transactions permit multiple users to simultaneously use the database
without needing to be aware of each other

Gordon Royle (UWA) Data Integrity 2 / 30

Referential integrity

Referential Integrity

Referential integrity means that whenever a value in one table refers to a tuple
in another table, then the system should ensure that there is always a matching
tuple in the second table.

Consider the following schema:
Student (id:integer, name:string)

Unit (code:string, name:string)

Enrolled (sid:integer, ucode:integer)

Here, Enrolled.sid refers to the id column in the Student table, while
Enrolled.ucode refers to the code column in the Unit table.

(Notice that the names of the columns in Enrolled do not have to match the
columns that are being referred to.)

Gordon Royle (UWA) Data Integrity 3 / 30

Referential integrity

Current contents

mysql> select * from Student;
+------+----------+
| id | name |
+------+----------+
123	Jane
456	Ebenezer
789	Martin
+------+----------+	
mysql> select * from Unit;	
+----------+---------------------+	
ucode	name
+----------+---------------------+	
CITS1402	Databases
CITS2211	Discrete Structures
+----------+---------------------+
2 rows in set (0.00 sec)

Gordon Royle (UWA) Data Integrity 4 / 30

Referential integrity

Legitimate enrolments

Any tuple in Enrolled should should then connect a legitimate student with
a legitimate unit.

Of the four commands

INSERT INTO Enrolled VALUES(123, "CITS1402");
INSERT INTO Enrolled VALUES(124, "CITS1402");
INSERT INTO Enrolled VALUES(123, "CITS1412");
INSERT INTO Enrolled VALUES(124, "CITS1412");

only the first should succeed.

The tuple (124, "CITS1402") refers to a student with id 124, but there
is no such student — this is called a dangling pointer.

Gordon Royle (UWA) Data Integrity 5 / 30

Referential integrity

Key constraints

The table containing the pointers (references) is called the child table, while
the tables that the pointers point to (the references refer to) are called the
parent tables.

(So in this case, Enrolled is the child table, and Student, Unit are the
parent tables.)

When the referred-to column (or columns) are a key for the parent table, then
SQL provides a mechanism for ensuring that the references between the
tables are always in a consistent state — this is the key constraint mechanism.

Gordon Royle (UWA) Data Integrity 6 / 30

Referential integrity

Prepare the parent tables

The column (or columns) in each of parent tables must be a key for that table.

CREATE TABLE Student (
id INT PRIMARY KEY,
name VARCHAR(64));

CREATE TABLE Unit (
code INT PRIMARY KEY,
name VARCHAR(64));

This guarantees that each student has a unique id and that each unit has a
unique code — clearly these sort of constraints are essential if the database
is to make any sense at all.

Gordon Royle (UWA) Data Integrity 7 / 30

Referential integrity

Prepare the child table

CREATE TABLE Enrolled (
sid INT,
ucode VARCHAR(8),
FOREIGN KEY (sid)
REFERENCES Student(id),

FOREIGN KEY (ucode)
REFERENCES Unit(code));

This informs the DBMS that every value of Enrolled.sid should match
(exactly) one of the values of Student.id.

After this declaration the DBMS will take over the management of these
relationships and ensure that they remain consistent.

Gordon Royle (UWA) Data Integrity 8 / 30

Referential integrity

Enforcing key constraints

mysql> INSERT INTO Enrolled VALUES(123, "CITS1402");
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO Enrolled VALUES(124, "CITS1402");
ERROR 1452 (23000): Cannot add or update a child row:

a foreign key constraint fails
(‘test‘.‘enrolled‘, CONSTRAINT ‘enrolled_ibfk_1‘
FOREIGN KEY (‘sid‘) REFERENCES ‘Student‘ (‘id‘))

As desired, any attempt to enrol a non-existent student will be prevented.
(Immediately an entire set of “fat finger” data entry errors are eliminated.)

Gordon Royle (UWA) Data Integrity 9 / 30

Referential integrity

Updates

The key constraint means that data must be inserted first into the parent tables
(i.e. students and units first) and only then into the child table (the
enrolments).

What about updating and deleting rows?

mysql> UPDATE Student SET id = 1234 where id = 123;
ERROR 1451 (23000): Cannot delete or update a parent row:
a foreign key constraint fails
(‘test‘.‘enrolled‘, CONSTRAINT ‘enrolled_ibfk_1‘
FOREIGN KEY (‘sid‘) REFERENCES ‘Student‘ (‘id‘))

The key field for a parent row cannot be changed while some value in a child
table is pointing to it, which of course would normally be exactly the desired
behaviour.

Gordon Royle (UWA) Data Integrity 10 / 30

Referential integrity

Alternative options

What are some other behaviours that make sense when updating or deleting
rows in these tables?

Forbidding the operation
This is the default, and operations that would cause a referential integrity
violation are not executed.

Cascading the operation
This means to “fix up” the referential integrity violation by doing the
same thing to the row in the child table as has happened to the matching
row in the parent table.

Using NULL to allow the operation to occur, but leaving the database in a
state that is neither fully consistent nor fully inconsistent.

Gordon Royle (UWA) Data Integrity 11 / 30

Referential integrity

Adding the desired behaviour

CREATE TABLE Enrolled (
sid INT,
ucode VARCHAR(8),
FOREIGN KEY (sid)
REFERENCES Student(id)
ON UPDATE CASCADE
ON DELETE CASCADE,

FOREIGN KEY (ucode)
REFERENCES Unit(code)
ON UPDATE CASCADE
ON DELETE CASCADE);

Gordon Royle (UWA) Data Integrity 12 / 30

Referential integrity

Cascading updates

mysql> SELECT * FROM Enrolled;
+------+----------+
| sid | ucode |
+------+----------+
123	CITS1402
123	CITS2211
456	CITS1402
456	CITS2211
789	CITS1402
789	CITS2211
+------+----------+

UPDATE Student SET id = 1000+id;

mysql> SELECT * FROM Enrolled;
+------+----------+
| sid | ucode |
+------+----------+
1123	CITS1402
1123	CITS2211
1456	CITS1402
1456	CITS2211
1789	CITS1402
1789	CITS2211
+------+----------+

Gordon Royle (UWA) Data Integrity 13 / 30

Referential integrity

Cascading deletions

mysql> SELECT * FROM Enrolled;
+------+----------+
| sid | ucode |
+------+----------+
1123	CITS1402
1123	CITS2211
1456	CITS1402
1456	CITS2211
1789	CITS1402
1789	CITS2211
+------+----------+

DELETE FROM Student WHERE id = 1123;

mysql> SELECT * from Enrolled;
+------+----------+
| sid | ucode |
+------+----------+
1456	CITS1402
1456	CITS2211
1789	CITS1402
1789	CITS2211
+------+----------+

Gordon Royle (UWA) Data Integrity 14 / 30

Referential integrity

The options

In MySQL the options for the phrase to follow ON UPDATE and ON
DELETE include:

NO ACTION or RESTRICT
These both prevent the operation (and can be omitted)

CASCADE
As seen above

SET NULL
Used in phrases like ON UPDATE SET NULL which sets the entry in
the child table to NULL if the parent table’s row is changed.

Gordon Royle (UWA) Data Integrity 15 / 30

Referential integrity

A word of warning

Common databases vary a great deal in how closely they implement the SQL
standard, especially the advanced features.

Many people have been caught out by the fact that MySQL, for example,
accepts a number of standard SQL constructions, but doesn’t actually
implement them. For example

CREATE TABLE Enrolled (
sid INT REFERENCES Student(id),
ucode VARCHAR(8) REFERENCES Unit(code));

is legal SQL creating a foreign key relationship.

MySQL accepts the syntax, creates the table, but silently ignores the desired
constraints!

Gordon Royle (UWA) Data Integrity 16 / 30

Referential integrity

Self-referential integrity

It is possible to have a single table that is simultaneously the parent
(referred-to) and the child (referring) table. For example, suppose each
student is assigned a mentor (a higher-level student) to look after them on first
arriving at University.

CREATE TABLE Student (
id INT PRIMARY KEY,
name VARCHAR(64),
mentor INT,
FOREIGN KEY (mentor)
REFERENCES Student(id)
ON UPDATE CASCADE ON DELETE CASCADE);

Gordon Royle (UWA) Data Integrity 17 / 30

Referential integrity

Some experimenting

INSERT INTO Student VALUES (123, ’Amy’, NULL);
INSERT INTO Student VALUES (345, ’Bill’,NULL);
INSERT INTO Student VALUES (678, ’Charlie’,NULL);
UPDATE Student SET mentor = 345 WHERE id = 678;
UPDATE Student SET mentor = 123 WHERE id = 345;

mysql> select * from Student;
+-----+---------+--------+
| id | name | mentor |
+-----+---------+--------+
123	Amy	NULL
345	Bill	123
678	Charlie	345
+-----+---------+--------+

Gordon Royle (UWA) Data Integrity 18 / 30

Referential integrity

Some experimenting

What will happen if Amy graduates and we update the DB with

DELETE FROM Student WHERE id = 123;

mysql> DELETE FROM Student WHERE id = 123;
Query OK, 1 row affected (0.00 sec)

mysql> select * from Student;
Empty set (0.00 sec)

The “cascade” did what we asked it to do, not what we wanted it to do
(computers are like that).

Gordon Royle (UWA) Data Integrity 19 / 30

Referential integrity

Some experimenting

What will happen if Amy graduates and we update the DB with

DELETE FROM Student WHERE id = 123;

mysql> DELETE FROM Student WHERE id = 123;
Query OK, 1 row affected (0.00 sec)

mysql> select * from Student;
Empty set (0.00 sec)

The “cascade” did what we asked it to do, not what we wanted it to do
(computers are like that).

Gordon Royle (UWA) Data Integrity 19 / 30

Referential integrity

Some experimenting

CREATE TABLE Student (
id INT PRIMARY KEY,
name VARCHAR(64),
mentor INT,
FOREIGN KEY (mentor)
REFERENCES Student(id)
ON UPDATE CASCADE ON DELETE SET NULL);

mysql> DELETE FROM Student WHERE id = 123;
mysql> select * from Student;
+-----+---------+--------+
| id | name | mentor |
+-----+---------+--------+
| 345 | Bill | NULL |
| 678 | Charlie | 345 |
+-----+---------+--------+
2 rows in set (0.00 sec)

Gordon Royle (UWA) Data Integrity 20 / 30

General Integrity

Other forms of integrity

In addition to referential integrity, SQL provides a number of mechanisms
that can be used to validate data to help catch either data entry errors, or
statements that violate the “business logic” underlying the database.

One way to accomplish this is to use CHECK constraints although, as we
learned last week, MySQL will accept but silently ignore any CHECK
statements.

Gordon Royle (UWA) Data Integrity 21 / 30

General Integrity

Basic CHECK

Last week we considered

CREATE TABLE BankAccount (
accountNumber INT,
balance REAL CHECK (balance > -1000));

Using PostgreSQL as the database, we get

INSERT INTO BankAccount VALUES(123,-2000);
ERROR: new row for relation "bankaccount"
violates check constraint "bankaccount_balance_check"
DETAIL: Failing row contains (123, -2000)

Gordon Royle (UWA) Data Integrity 22 / 30

General Integrity

Changing constraints

Each constraint has a name, in this case the automatically-supplied name
bankaccount_balance_check so we can refer to the constraint if we
need to remove it or replace it with a different one.

ALTER TABLE BankAccount
DROP CONSTRAINT bankaccount_balance_check;

We can impose a more rigorous constraint:

ALTER TABLE BankAccount
ADD CONSTRAINT new_balance_check
CHECK (balance > 0);

Gordon Royle (UWA) Data Integrity 23 / 30

General Integrity

Multi-column constraints

Check constraints can be declared over more than one column (thus enforcing
some sort of relationship across the whole row) and they can use the normal
logical operators.

CREATE TABLE BankAccount(
id INT PRIMARY KEY,
balance REAL,
investment REAL,
CHECK ((balance > 0) OR

(balance > -1000 AND investment > 10000)));

Customers with at least $10,000 invested with the bank can be up to $999.99
dollars overdrawn, but all other customers must maintain a positive balance.

Gordon Royle (UWA) Data Integrity 24 / 30

General Integrity

Multi-column constraints

The multi-column check works exactly as expected.

INSERT INTO BankAccount VALUES (1, -100, 5000);
ERROR: new row for relation "bankaccount"
violates check constraint "bankaccount_check"

DETAIL: Failing row contains (1, -100, 5000).

Multiple CHECK constraints can be added to a table so any number of
potential violations can be intercepted.

Gordon Royle (UWA) Data Integrity 25 / 30

General Integrity

Subqueries

In principle (i.e. according to the SQL standard) CHECK constraints can also
include subqueries. This permits a wide range of strong constraints to be
enforced.

CREATE TABLE BankAccount (
id INT PRIMARY KEY,
customer_id INT,
balance REAL,
CHECK (balance > (-1)*SELECT SUM(I.balance)

FROM InvestmentAccount I
WHERE customer_id = I.customer_id));

Gordon Royle (UWA) Data Integrity 26 / 30

General Integrity

Subqueries

Allowing subqueries in CHECK constraints also raises a large number of
implementation issues – in particular, when the constraint should be checked?

Simple check constraints can basically only be violated when a tuple is
updated or inserted — so the check is performed immediately before or after
the update or insertion.

Constraints with subqueries can become invalid when any of the tables
involved changes, via updates, insertions or deletions.

The performance penalty involved in repeatedly checking every row of a table
for validity on every change to some distantly-related table means it is
normally never implemented.

Gordon Royle (UWA) Data Integrity 27 / 30

General Integrity

Adaptive checks

The CHECK mechanism is a blunt instrument — it simply generates an
immediate error as soon as a constraint is violated, and leaves the user (or
user’s application) to remedy the problem.

Sometimes however, there are obvious actions that can be taken — for
example, if an update results in a BankAccount balance dropping below the
lower limit, then the shortfall might be automatically transferred from the
investment account if enough money is available.

This cannot be achieved using CHECK constraints only, but as we have seen,
the trigger mechanism can meet these requirements.

Gordon Royle (UWA) Data Integrity 28 / 30

General Integrity

Other integrity mechanisms

There are a variety of other ways to constrain the values that can occur in a
column

NOT NULL

Adding this after the type of an attribute (e.g. taxFileNumber INT

NOT NULL) guarantees that this column will never contain any NULL

entries.

UNIQUE

Adding this after the type of an attribute (e.g. taxFileNumber INT

UNIQUE) guarantees that this column will never contain any duplicate
entries.

Gordon Royle (UWA) Data Integrity 29 / 30

General Integrity

A sample question - what is the output?

CREATE TABLE R (A INT PRIMARY KEY);
CREATE TABLE S (B INT PRIMARY KEY,

FOREIGN KEY (B) REFERENCES R(A) ON UPDATE CASCADE);
CREATE TABLE T (C INT PRIMARY KEY,

FOREIGN KEY (C) REFERENCES S(B) ON UPDATE CASCADE);

INSERT INTO R VALUES (1); INSERT INTO R VALUES (2);
INSERT INTO R VALUES (3); INSERT INTO R VALUES (4);
INSERT INTO R VALUES (5); INSERT INTO R VALUES (6);

INSERT INTO S VALUES (1); INSERT INTO S VALUES (2);
INSERT INTO S VALUES (4); INSERT INTO S VALUES (6);

INSERT INTO T VALUES (1); INSERT INTO T VALUES (2);
INSERT INTO T VALUES (6);

UPDATE R SET A = A + 10 WHERE A < 5;
SELECT SUM(C) FROM T;

Gordon Royle (UWA) Data Integrity 30 / 30

	Referential integrity
	General Integrity

