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This lecture

Redundancy in a DBMS refers to the storage of the same piece of data in
multiple places.

While controlled redundancy (for example, system backups) are necessary,
dealing with uncontrolled redundancy is a major issue in any database
management system.

The concepts of functional dependencies and the associated theory of
normalization is a mathematical theory dealing with redundancy.
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Redundancy

One of the main reasons for using relational tables for data is to avoid the
problems caused by redundant storage of data.

For example, consider the sort of general information that is stored about a
student:

Student Number

Name

Address

Date of Birth

Different parts of the university may keep different additional items of data
regarding students, such as grades, financial information and so on.
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Repeating Data

Suppose that marks are kept in the following format:

Student Number Name Unit Code Mark
14058428 John Smith CITS1402 72
14058428 John Smith CITS1401 68
14058428 John Smith CITS2200 68
15712381 Jill Tan CITS1401 88
15712381 Jill Tan CITS1402 82

Then this table contains redundant data, because the student’s name is
repeated in numerous different rows.

If the financial system also stores student numbers and names, then there is
redundancy between tables as well as within tables.
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Problems with redundancy

Apart from unnecessary storage, redundancy leads to some more significant
problems:

Update Anomalies
If one copy of a data item is updated — for example, a student changes
his or her name — then the database becomes inconsistent unless every
copy is updated.

Insertion Anomalies
A new data item — for example, a new mark for a student — cannot be
entered without adding some other, potentially unnecessary, information
such as the student’s name.

Deletion Anomalies
It may not be possible to delete some data without losing other, unrelated
data, as well (an example is on the next slide).
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Deletion Anomalies

A deletion anomaly occurs when a table storing redundant information
becomes a proxy for storing that information properly.

For example, suppose that a company pays fixed hourly rates according to the
level of an employee:

Name Level Rate
Smith 10 55.00
Jones 8 30.00
Tan 10 55.00

White 9 42.00
...

...
...

This table contains not only the employee data, but also the association
between the level of an employee and the rate for that level.
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What if Jones leaves?

If Jones happens to be the only employee currently at level 8, and he leaves
and is deleted from the database, then the more general information that “The
hourly rate for Level 8 is $30.00” is also lost.

In this situation a better approach is to keep a separate table that relates levels
and rates.

Level Rate
...

...
8 30.00
9 42.00
10 55.00
...

...

Name Level
Smith 10
Jones 8
Tan 10

White 9
...

...
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Separating the student tables

The redundancy problems with the student information can also be resolved
by creating a separate table with just the basic student information

Student Number Name
14058428 John Smith
15712381 Jill Tan

and then the marks in a separate table.

Student Number Unit Code Mark
14058428 CITS1402 72
14058428 CITS1401 68
14058428 CITS2200 68
15712381 CITS1401 88
15712381 CITS1402 68
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Decomposition

Both of these examples were improved by replacing a table with redundancy
with two tables, each containing a subset of the original attributes (columns).

This leads to the following definition:

A decomposition of a relation schema R is a set of two (or more) relation
schemas, each containing a subset of the attributes of R, such that together, the
replacement schemas contain all the attributes of R.

Note that the idea of a decomposition of a relation (and the normalization of a
DB) relates to the structure of the relations, not the contents of the relations.

(In other words, we are dealing with relation schemas rather than relation
instances.)
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Example

Suppose that R is the original “Student Number / Name / Unit Code / Mark”
schema above — we’ll abbreviate this to

R = SNUM

(S =Student Number, N = Name, U = Unit Code, M = Mark).

Then the decomposition suggested above would decompose R into

R1 = SN R2 = SUM

Is it better to use one relation R with attributes SNUM or two relations R1
and R2with attributes SN and SUM?
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Which is better

Before we can answer this, or even think about it clearly, we need some more
concepts.

If we replace R by R1 and R2, how would the data stored in R be split up?

A moment’s thought tells us that the only possible thing that makes sense is
for R1 and R2 to each be defined as the projection of R onto the relevant subset
of attributes.

R1 = πSUM (R)

R2 = πSN (R)
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In MySQL

CREATE TABLE R (S INT, N VARCHAR(16), U VARCHAR(8), M INT);

INSERT INTO R VALUES(14058428,"John Smith","CITS1401",72);
INSERT INTO R VALUES(14058428,"John Smith","CITS1402",68);
INSERT INTO R VALUES(14058428,"John Smith","CITS2200",68);
INSERT INTO R VALUES(15712381,"Jill Tan","CITS1401",88);
INSERT INTO R VALUES(15712381,"Jill Tan","CITS1402",68);

SELECT * FROM R;
+----------+------------+----------+------+
| S | N | U | M |
+----------+------------+----------+------+
| 14058428 | John Smith | CITS1401 | 72 |
| 14058428 | John Smith | CITS1402 | 68 |
| 14058428 | John Smith | CITS2200 | 68 |
| 15712381 | Jill Tan | CITS1401 | 88 |
| 15712381 | Jill Tan | CITS1402 | 68 |
+----------+------------+----------+------+
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Projection

We want R1 = πSN (R), so

INSERT INTO R1
(SELECT DISTINCT S, N FROM R);

We need the SELECT DISTINCT to force MySQL to remove duplicates.

mysql> SELECT * FROM R1;
+----------+------------+
| S | N |
+----------+------------+
| 14058428 | John Smith |
| 15712381 | Jill Tan |
+----------+------------+

INSERT INTO R2 (SELECT DISTINCT S, U, M FROM R);
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Recovering data

Can we recover the original relation R from its replacements R1 and R2?

What happens when we join R1 and R2 matching up the attributes they have in
common?

SELECT * FROM R1 NATURAL JOIN R2;
+----------+------------+----------+------+
| S | N | U | M |
+----------+------------+----------+------+
| 14058428 | John Smith | CITS1401 | 72 |
| 14058428 | John Smith | CITS1402 | 68 |
| 14058428 | John Smith | CITS2200 | 68 |
| 15712381 | Jill Tan | CITS1401 | 88 |
| 15712381 | Jill Tan | CITS1402 | 68 |
+----------+------------+----------+------+

For this particular instance of R, we can equally well store R or R1 and R2
and create one from the other and vice versa.
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Lossless-join decomposition

If a relation R is decomposed into relations R1, R2 such that for every legal
instance r of R

r = πR1(r) ./ πR2(r)

then the decomposition itself is said to be a lossless-join decomposition.

You can view this as a sort of minimum requirement for a decomposition to be
acceptable.
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How can a decomposition not be lossless-join?

We’ll take the same relation R = SNUM, but this time we’ll try taking

S1 = SM S2 = NUM

and see what happens.

Remember that a trial with one particular instance might show that a
decomposition is not lossless-join, but not that it is!
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Project onto the two relations

INSERT INTO S1 (SELECT DISTINCT S, M FROM R);
INSERT INTO S2 (SELECT DISTINCT N, U, M FROM R);

SELECT * FROM S1;
+----------+------+
| S | M |
+----------+------+
| 14058428 | 72 |
| 14058428 | 68 |
| 15712381 | 88 |
| 15712381 | 68 |
+----------+------+
SELECT * FROM S2;
+------------+----------+------+
| N | U | M |
+------------+----------+------+
| John Smith | CITS1401 | 72 |
| John Smith | CITS1402 | 68 |
| John Smith | CITS2200 | 68 |
| Jill Tan | CITS1401 | 88 |
| Jill Tan | CITS1402 | 68 |
+------------+----------+------+
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Join back together

SELECT * FROM S1 NATURAL JOIN S2;
+------+----------+------------+----------+
| M | S | N | U |
+------+----------+------------+----------+
| 72 | 14058428 | John Smith | CITS1401 |
| 68 | 14058428 | John Smith | CITS1402 |
| 68 | 15712381 | John Smith | CITS1402 |
| 68 | 14058428 | John Smith | CITS2200 |
| 68 | 15712381 | John Smith | CITS2200 |
| 88 | 15712381 | Jill Tan | CITS1401 |
| 68 | 14058428 | Jill Tan | CITS1402 |
| 68 | 15712381 | Jill Tan | CITS1402 |
+------+----------+------------+----------+

This is not the original instance of R, and so the decomposition into S1 and S2
is not suitable.
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Which are lossless?

A decomposition of a relational schema R into R1 and R2 is lossless-join if
and only if the set of attributes in R1 ∩ R2 contains a key for R1 or R2.

For the example above that worked, R1 ∩ R2 is the single attribute S (student
number) which is a key for R2 = SN and hence the decomposition is
lossless-join.

For the example that did not work, S1 ∩ S2 = M and M is not a key for either
S1 or S2.
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Other decompositions

In general, an arbitrary decomposition of a schema will not be lossless join.

A B C
a1 b1 c1
a2 b2 c2
a3 b1 c3

Instance r

A B
a1 b1
a2 b2
a3 b1

Instance πAB(r)

B C
b1 c1
b2 c2
b1 c3

Instance πBC(r)

Here B is not a key for either AB or BC, so the condition for lossless join is
not met.
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Lossy join

Now consider the join πAB(r) ./ πBC(r)

A B C
a1 b1 c1
a1 b1 c3
a2 b2 c2
a3 b1 c3
a3 b1 c1

This contains two tuples that were not in the original relation — because b1 is
associated with both a1 and a3 in the first relation, and c1 and c3 in the second.
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Problems with decomposition

Some types of redundancy in (or between) relations can be resolved by
decomposition.

However decomposition introduces its own problems, in particular the fact
that queries over the decomposed schemas now require joins; if such queries
are very common then the deterioration in performance may be more severe
than the original problems due to redundancy.

To make informed decisions about whether to decompose or not requires a
formal understanding about the types of redundancy and which can be
resolved through decomposition — this is the theory of functional
dependencies.
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Functional dependencies

A functional dependency (an FD) is a generalization of the concept of a key in
a relation.

Suppose that X and Y are two subsets of the attributes of a relation with the
following property:

“No two tuples can be identical on X, but different on Y”

In this situation we say that X determines Y and write

X → Y.

Note that an FD arises from the “business logic” underlying the database and
not from its contents at any one time.
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Keys

The obvious functional dependencies come from the keys of a relation.

For example, in the student-number / name relation SN we have the obvious
functional dependency

S→ N

meaning that the student number determines the name of the student.

Obviously S determines S and so

S→ SN

which is just another way of saying that the student-number is a key for the
whole relation.
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Superkeys

A key is a minimal set of attributes that determines all of the remaining
attributes of a relation.

For example, in the SNUM relation above, the pair SU is a key because the
student number and unit code determine both the name and the mark, or in
symbols

SU → SNUM.

(It is clear that no legal instance of the relation can have two tuples with the
same student number and unit code, but different names or marks.)

Any superset of a key is called a superkey — it determines all of the
remaining attributes, but is not minimal.
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Reasoning about FDs

Often some functional dependencies will be immediately obvious from the
semantics1 of a relation, while others may follow as a consequence of these
initial ones.

For example, if R is a relation with FDs A→ B and B→ C, then it follows
that

A→ C

as well.

(Take two tuples with the same values for attribute A, then they must have the same
values for attribute B because of the first FD, and so they must have the same values
for C by the second FD.)

1i.e. the meaning of the attributes
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Armstrong’s Axioms

Armstrong’s Axioms is a set of three rules that can be repeatedly applied to a
set of FDs:

Reflexivity: If Y ⊆ X then X → Y .

Augmentation: If X → Y then XZ → YZ for any Z.

Transitivity: If X → Y and Y → Z then X → Z.

In addition there are a couple of obvious rules:

Union: If X → Y and X → Z then X → YZ.

Decomposition: If X → YZ, then X → Y and X → Z.
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Sound and complete

The key point about Armstrong’s axioms is that they are both sound and
complete. That is, if we start with a set F of FDs then:

Repeated application of Armstrong’s axioms to F generates only FDs
that are consequences of F

Any FD that is a consequence of F be obtained by repeated application
of Armstrong’s axioms to F.
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Example

Consider a relation with attributes ABC and let

F = {A→ B,B→ C}

Then from transitivity we get A→ C, by augmentation we get AC→ BC and
by union we get A→ BC.

FDs that arise from reflexivity such as

AB→ B

are known as trivial dependencies.
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Closure

Given a set X of attributes from some relation R, the closure X+ is the set of
all attributes that are determined by X. In symbols

X+ = {A : X → A}

The following properties hold:

X ⊆ X+

X+ = R if and only if X is a superkey

X → X+ is a sort of “maximal” FD
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Example

Suppose R(A,B,C,D,E) has the following FDs

D→ C,CE → A,D→ A,AE → D

What is BDE+? (We use BDE as shorthand for {B,D,E}.)

So far we know that BDE+ contains BDE

From the FD D→ C, BDE+ contains BCDE

From the FD CE → A, BDE+ contains ABCDE

Therefore BDE+ is the whole relation and BDE is a superkey for R.
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Example 2

Suppose R(A,B,C,D,E) has the following FDs

D→ C,CE → A,D→ A,AE → D

What is BD+?

So far we know that BD+ contains BD

From the FD D→ C, BD+ contains BCD

From the FD D→ A, BD+ contains ABCD

Therefore BD+ is not a superkey because E is not determined by it.
(In fact, E is not on the right-hand side of any FD and so it must be in every
key and super key.)
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Example 3

Let R = (A,B,C,D,E,F) be a relation schema with the following FDS:

C→ F,E → A,EC→ D,A→ B

Which of the following is a key for R?

CD

EC

AE

AC

The answer is EC, using C→ F, E → A, then A→ B and finally EC→ D.
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Normal forms

There is a hierarchy of normal forms

First normal form
Entries in the table are scalar values — sets of values not allowed

Second normal form
1NF plus every non-key attribute depends on the whole key (only
relevant where there are composite keys)

Third normal form
2NF plus no transitive dependencies

Boyce-Codd normal form
3NF plus conditions to be discussed
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BCNF

A relational schema is in Boyce-Codd normal form if for every functional
dependency X → A (where X is a subset of the attributes and A is a single
attribute) either

A ∈ X (that is, X → A is a trivial FD), or

X is a superkey.

In other words, the only functional dependencies are either the trivial ones
(which always hold) or ones based on the keys of the relation.

If a relational schema is in BCNF, then there is no redundancy within the
relations.
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No redundancy in BCNF

Loosely speaking, a relational schema in BCNF is already in its “leanest”
possible form — each attribute is determined by the key(s) alone so nothing
that is stored can be deduced from a smaller amount of information.

The student number / name / unit code / mark relation SNUM from last lecture
is not in BCNF because there is a functional dependency

S→ N

but S is not a superkey.
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BCNF decomposition

Suppose a relation R is not in BCNF. Then there must be some functional
dependency

X → Y

where X is not a superkey; this is a Boyce-Codd violation.

We can assume that Y ∩ X = ∅ so Y only contains some “extra” attributes
determined by X, not the ones in X itself.

Then the relation can be decomposed into the two relations

R1 = R− Y R2 = XY

As X is a key for R2, this is a lossless-join decomposition.
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Example

Suppose R(A,B,C,D,E) has the following FDs

D→ C,CE → A,D→ A,AE → D

Now D+ = ACD and so
D→ ACD

is a BCNF violation.

So by putting X = D and Y = AC the decomposition rule says to decompose
into

R1 = BDE R2 = ACD
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Back to SNUM

In our SNUM example,
S→ N

is a BCNF violation.

So the rule says to decompose into

R1 = SUM R2 = SN

which is exactly the decomposition we found earlier.
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BCNF decomposition cont.

If either R1 or R2 is not in BCNF then the process can be continued, by
decomposing them in the same fashion.

By continually decomposing any relation not in BCNF into smaller relations,
we must eventually end up with a collection of relations that are in BCNF.

Therefore any initial schema can be decomposed into BCNF.
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Is BCNF the ultimate answer?

Definitely not!

There are various problems associated with decomposing into BCNF

While it reduces redundancy, queries may take considerably longer, as
they now involve possibly complicated joins

Some FDs that hold on the original relation can no longer be enforced
using the decomposed relations

There are numerous other “normal forms” each of which has an associated
decomposition theory, and choosing whether and how to decompose is an
important task for the database designer.
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