
Databases - Classic Models

Gordon Royle

School of Mathematics & Statistics
University of Western Australia

Gordon Royle (UWA) Classic Models 1 / 33

This lecture

This lecture analyses a freely available “sample database” known as “Classic
Models”.

http://www.mysqltutorial.org/mysql-sample-database.aspx

This is an 8-table database representing the operations of a business selling
classic models of cars, trains etc.

Gordon Royle (UWA) Classic Models 2 / 33

http://www.mysqltutorial.org/mysql-sample-database.aspx

Install and open

After the database is installed, we can use the MySQL Workbench to reverse
engineer it and draw the structure diagram.

Gordon Royle (UWA) Classic Models 3 / 33

The schema

The diagram shows

The tables in the database

The attributes (that is, columns) of each table

The relationships between the tables

The constraints on the tables

Gordon Royle (UWA) Classic Models 4 / 33

The tables

The database contains 8 tables

Gordon Royle (UWA) Classic Models 5 / 33

A simple table

One way to start understandng a table is to see how it was created.

mysql> SHOW CREATE TABLE payments;
CREATE TABLE ‘payments‘ (
‘customerNumber‘ int(11) NOT NULL,
‘checkNumber‘ varchar(50) NOT NULL,
‘paymentDate‘ date NOT NULL,
‘amount‘ double NOT NULL,
PRIMARY KEY (‘customerNumber‘,‘checkNumber‘),
CONSTRAINT ‘payments_ibfk_1‘ FOREIGN KEY (‘customerNumber‘)

REFERENCES ‘customers‘ (‘customerNumber‘)
) ENGINE=InnoDB DEFAULT CHARSET=latin1

Gordon Royle (UWA) Classic Models 6 / 33

Analysis 1

The table has four columns

The customerNumber which is an INT

The checkNumber which is a string of characters
Note that check is the US-English version of cheque.

The paymentDate which is when the payment was made
This is of type DATE which is a built in SQL type.

The amount which is a double precision floating number
This allows numbers like 1001.25 to be stored.

Gordon Royle (UWA) Classic Models 7 / 33

Analysis 2

The table has a primary key

(customerNumber, checkNumber)

which means that the combination of these values uniquely determines a
payment. Declaring this to MySQL has two effects — firstly it prevents
double data entry, and secondly it creates an index that makes retrieving rows
with a particular value of the key very rapid.

In other words, two different rows cannot have the same values for both
customerNumber and checkNumber.

Intuitively this means that if you know both the customer number and check
number, then you can precisely track down the payment.

Gordon Royle (UWA) Classic Models 8 / 33

Analysis 3

The final feature is

CONSTRAINT ‘payments_ibfk_1‘ FOREIGN KEY (‘customerNumber‘)
REFERENCES ‘customers‘ (‘customerNumber‘)

This specifies a constraint that must be satisfied by every row of the table.

Don’t worry - some of this ugly-looking constraint has been auto-generated
by MySQL, and the syntax that the DBA uses specifying a constraint is not as
complicated.

Gordon Royle (UWA) Classic Models 9 / 33

Analysis 4

The constraint is called payments_ibfk_1 — this name would have
been generated automatically

The constraint is a FOREIGN KEY constraint

The constraint says that the field customerNumber (in the table being
defined) must be a reference to the field
customers(customerNumber), which is the customerNumber
field of the customers table.

This forces every entry in the payments table to refer to a legitimate
customer number in the customer table.

Gordon Royle (UWA) Classic Models 10 / 33

Orders

The table orders also has a field called customerNumber and it too is a
foreign key to the customers table.

A table containing the references is called the child table, while the table the
references refer to is called the parent table.

So in this case, both payments and orders are child tables with parent
table customers.

Gordon Royle (UWA) Classic Models 11 / 33

Customers

SELECT customerNumber
FROM orders;
+----------------+
| customerNumber |
+----------------+
| 103 |
| 103 |
| 103 |
| 112 |
| 112 |
| 112 |
| 114 |
| 114 |
| 114 |
...

Gordon Royle (UWA) Classic Models 12 / 33

Deleting customers

Suppose that customer 112 retires and closes up his business, so we want to
remove that record.

The syntax for deleting rows is to simply replace SELECT with DELETE.

DELETE FROM customers
WHERE customerNumber = 112;

So this command should delete customer 112.

Gordon Royle (UWA) Classic Models 13 / 33

But what happens?

mysql> DELETE FROM customers WHERE customerNumber = 112;
ERROR 1451 (23000): Cannot delete or update a parent row:
a foreign key constraint fails
(‘classicmodels‘.‘orders‘,
CONSTRAINT ‘orders_ibfk_1‘
FOREIGN KEY (‘customerNumber‘)
REFERENCES ‘customers‘ (‘customerNumber‘))

The deletion fails, but with a complicated error message.

Gordon Royle (UWA) Classic Models 14 / 33

Referential Integrity

The error message says that the system “Cannot delete or update a parent
row”.

The parent row is the row in customers for customer number 112, so the
system is reporting that it cannot delete this row.

It then gives the reason, which is that if the row were to be deleted, then the
foreign key constraint whose name is orders_ibfk_1 would be violated.

The requirement that all references must be valid is called referential integrity.

Gordon Royle (UWA) Classic Models 15 / 33

So what now?

In this case, the business must:

Delete all the orders involving customer 112,

Delete all the payments involving customer 112,

Then the row in customers can safely be deleted

If this is a frequent occurrence, then the entire process can be automated by
specifying rules for what should happen to the child rows when the parent
row is changed, as part of the CREATE TABLE command for the child table.

Gordon Royle (UWA) Classic Models 16 / 33

Offices

DESCRIBE offices;
+--------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+-------------+------+-----+---------+-------+
officeCode	varchar(10)	NO	PRI	NULL	
city	varchar(50)	NO		NULL	
phone	varchar(50)	NO		NULL	
addressLine1	varchar(50)	NO		NULL	
addressLine2	varchar(50)	YES		NULL	
state	varchar(50)	YES		NULL	
country	varchar(50)	NO		NULL	
postalCode	varchar(15)	NO		NULL	
territory	varchar(10)	NO		NULL	
+--------------+-------------+------+-----+---------+-------+
9 rows in set (0.01 sec)

The offices table lists address details for each office and assigns each a
unique code.

Gordon Royle (UWA) Classic Models 17 / 33

Offices

SELECT officeCode,
city

FROM offices;
+------------+---------------+
| officeCode | city |
+------------+---------------+
1	San Francisco
2	Boston
3	NYC
4	Paris
5	Tokyo
6	Sydney
7	London
+------------+---------------+
7 rows in set (0.00 sec)

Gordon Royle (UWA) Classic Models 18 / 33

Who uses offices?

The structure diagram shows us that the only table referring to offices is
the employees table.

This shows that each employee has exactly one office code, hence is attached
to exactly one office.

Gordon Royle (UWA) Classic Models 19 / 33

Who’s in Sydney?

What are the names of the Sydney employees?

SELECT E.lastname
FROM employees E,

offices O
WHERE E.officecode = O.officecode

AND O.city = ’Sydney’;
+-----------+
| lastName |
+-----------+
| Patterson |
| Fixter |
| Marsh |
| King |
+-----------+

Gordon Royle (UWA) Classic Models 20 / 33

Who’s in Sydney?

What are the names of the Sydney employees?

SELECT E.lastname
FROM employees E,

offices O
WHERE E.officecode = O.officecode

AND O.city = ’Sydney’;
+-----------+
| lastName |
+-----------+
| Patterson |
| Fixter |
| Marsh |
| King |
+-----------+

Gordon Royle (UWA) Classic Models 20 / 33

Who’s in Sydney?

SELECT CONCAT(E.firstname, ’ ’, E.lastname)
FROM employees E,

offices O
WHERE E.officeCode = O.officeCode

AND O.city = ’Sydney’;
+--------------------------------------+
| CONCAT(E.firstName, ’ ’, E.lastName) |
+--------------------------------------+
| William Patterson |
| Andy Fixter |
| Peter Marsh |
| Tom King |
+--------------------------------------+

Gordon Royle (UWA) Classic Models 21 / 33

Crow’s foot notation

The double vertical bar (red arrow) means “exactly one” while the crows foot
(blue arrow) means “many” (more than one).

These are read in a “look across” fashion, so the diagram shows that each
payment is associated with exactly one customer, and each customer with
many payments.

Gordon Royle (UWA) Classic Models 22 / 33

Orders

How are orders represented in the DB?

There are two tables dealing with orders

The table orders
Each row of this table represents one order with a unique order number
and a foreign key reference to a customer.

The table orderdetails
Each row of this table contains information about one item in one order,
so the whole order consists of all the rows of this table with a particular
order number.

Gordon Royle (UWA) Classic Models 23 / 33

What’s an order?

SELECT orderNumber,
productCode,
quantityOrdered AS quant,
priceEach

FROM orderdetails
WHERE orderNumber = 10100;
+-------------+-------------+-------+-----------+
| orderNumber | productCode | quant | priceEach |
+-------------+-------------+-------+-----------+
10100	S18_1749	30	136
10100	S18_2248	50	55.09
10100	S18_4409	22	75.46
10100	S24_3969	49	35.29
+-------------+-------------+-------+-----------+
4 rows in set (0.00 sec)

Gordon Royle (UWA) Classic Models 24 / 33

Managing orders

This sort of structure is very common in a database where a “compound
object” can have an arbitrary number of parts.

Rather than try to accommodate the entire order in a single row, like:

(num, item1, quant1, price1, item2, quant2, price2, item3, quant3, ...)

the component parts of the order are each stored as separate rows in a table.

This allows an order to contain any number of products without specifying
how many in advance.

Gordon Royle (UWA) Classic Models 25 / 33

But what is the price?

So how do I find the price of an order, if its component parts are stored
separately?

The answer is a combination of joins and aggregation:

SELECT orderNumber,
Sum(quantityOrdered * priceEach) AS totalPrice

FROM orderdetails
GROUP BY orderNumber;
+-------------+------------+
| orderNumber | totalPrice |
+-------------+------------+
10100	10223.83
10101	10549.01
10102	5494.78

Gordon Royle (UWA) Classic Models 26 / 33

No redundancy principle

One of the major aims of a relational database is to avoid redundancy so that
each piece of information is stored in one place only.

If some combination of information stored in different tables is required, then
joins are used to combine the tables and extract what is required.

Gordon Royle (UWA) Classic Models 27 / 33

Which orders involve planes?

We want to find out which orders involve planes.

SELECT DISTINCT orderNumber
FROM orderdetails

NATURAL JOIN products
WHERE productLine = ’Planes’;
+-------------+
| orderNumber |
+-------------+
| 10106 |
| 10119 |
| 10131 |
...

Gordon Royle (UWA) Classic Models 28 / 33

Reporting

The employees table shows us that the data (i.e. row) for each employee
refers to another employee, who is their immediate supervisor — in other
words, the person they report to.

Who does 1702 report to?

SELECT reportsTo
FROM employees
WHERE employeeNumber = 1702;
+-----------+
| reportsTo |
+-----------+
| 1102 |
+-----------+

Gordon Royle (UWA) Classic Models 29 / 33

Adding names

What is the name of 1702’s supervisor?

SELECT firstname,
lastname

FROM employees
WHERE employeeNumber = (SELECT reportsTo

FROM employees
WHERE employeeNumber = 1702);

+-----------+----------+
| firstname | lastName |
+-----------+----------+
| Gerard | Bondur |
+-----------+----------+

Gordon Royle (UWA) Classic Models 30 / 33

Up the hierarchy

SELECT reportsTo
FROM employees
WHERE employeeNumber = 1102;
+-----------+
| reportsTo |
+-----------+
| 1056 |
+-----------+

SELECT reportsTo
FROM employees
WHERE employeeNumber = 1056;
+-----------+
| reportsTo |
+-----------+
| 1002 |
+-----------+

SELECT reportsto
FROM employees
WHERE employeenumber = 1002;
+-----------+
| reportsTo |
+-----------+
| NULL |
+-----------+

Gordon Royle (UWA) Classic Models 31 / 33

NULL

The “value” NULL has a special meaning in SQL and behaves in logical, but
sometimes counterintuitive, ways.

It is used as a “placeholder” to represent “don’t know” or “does not apply”,
i.e. missing or inapplicable data.

In this case, the President of the company does not report to anyone, so the
value of the reportsTo field is set to NULL.

Gordon Royle (UWA) Classic Models 32 / 33

Properties of NULL

A NULL entry is not treated as a value

SELECT firstName,
lastName,
jobtTitle

FROM employees
WHERE reportsTo = NULL;
Empty set (0.01 sec)

but there is a special mechanism for finding it in a table - using IS NULL.

SELECT firstName,
lastName,
jobtTitle

FROM employees
WHERE reportsTo IS NULL;
+-----------+----------+-----------+
| firstName | lastName | jobTitle |
+-----------+----------+-----------+
| Diane | Murphy | President |
+-----------+----------+-----------+

Gordon Royle (UWA) Classic Models 33 / 33

