
Databases - Transactions

Gordon Royle

School of Mathematics & Statistics
University of Western Australia

Gordon Royle (UWA) Transactions 1 / 34

ACID

ACID is the one acronym universally associated with Databases.

A tomicity

C onsistency

I solation

D urability

Gordon Royle (UWA) Transactions 2 / 34

Videos

You may find Jennifer Widom’s videos on transactions useful:

https://www.youtube.com/watch?v=-NPyRXCysW0
https://www.youtube.com/watch?v=usgUgO8xNDY
https://www.youtube.com/watch?v=zz-Xbqp0g0A

Gordon Royle (UWA) Transactions 3 / 34

Robustness

One of the most important properties of a modern DBMS is that it is robust
under both normal and unusual operating conditions.

Normal conditions include multiple users concurrently accessing the
database.

Unusual conditions include computer crashes, connection failures and
power outages.

It is important for a DBA to understand the role that transactions play in this
robustness.

Gordon Royle (UWA) Transactions 4 / 34

Interleaving

Most databases are being used by more than one client simultaneously.

Suppose that client A tries to run queries S1, S2, S3 and that at about the same
time, client B tries to run queries T1, T2, T3.

In order to keep the system responsive for all users, the system will interleave
the statements from A with the statements from B. So the system might
actually run:

S1,T1,T2, S2, S3,T3

in that order.

What if A and B are trying to work with the same table and some of A’s
statements are altering things that B needs?

Gordon Royle (UWA) Transactions 5 / 34

System Failure

The “canonical example” of an application where correct treatment of
transactions is critical is transferring money in a bank.

For example, suppose that a user at an ATM transfers money:

UPDATE Accounts
SET balance = balance - 500
WHERE id = 1;

UPDATE Accounts
SET balance = balance + 500
WHERE id = 2;

Suppose the system crashes after the first statement, but before the second?

A database must be able to recover to a consistent state when the system
comes back online.

Gordon Royle (UWA) Transactions 6 / 34

Transactions

A transaction is defined to be any one execution of a user program.

In this context, a “user program” consists of a number of statements that read
and write database objects (i.e. tables, values etc), before finally committing at
which point any changes to the state of the DB are made permanent (i.e.
written to disk).

A transaction then is a sequence of statements that must be treated on an
“all-or-nothing” basis — either all the statements must finish without
interference from other users, or none.

Gordon Royle (UWA) Transactions 7 / 34

ACID

Atomicity

The word atomic is used in a number of contexts to denote indivisible.

In a DB context, transactions are atomic if the system ensures that they cannot
be “half-done” — in other words, the user is guaranteed that either the entire
transaction completes or it fails and has no effect on the database.

The bank transfer example above is one application where users rely on the
atomicity of transactions.

Gordon Royle (UWA) Transactions 8 / 34

ACID

Consistency

Transactions must preserve the consistency of the database.

More precisely, if the database is in a consistent state, and a transaction is
executed to completion on its own (i.e. with no concurrently executing
transactions) then the state of the database after the transaction should also be
consistent.

This is basically a fancy way of saying that the user’s programs should be
correct. Transaction consistency is therefore the responsibility of the user not
the DBMS.

Gordon Royle (UWA) Transactions 9 / 34

ACID

Isolation

Isolation means that the user of the DB should be able to execute a transaction
without regard for concurrently executing transactions.

In other words, the user’s actions should be isolated from the actions of other
users — at least for the duration of the transaction.

Gordon Royle (UWA) Transactions 10 / 34

ACID

Durability

Durability means that once the user is informed of the successful completion
of a transaction, then its effects on the database are persistent.

Thus the user should be shielded from any possible problems (eg system
crashes) that might occur after being notified that the transaction has
successfully completed.

Gordon Royle (UWA) Transactions 11 / 34

ACID

Atomicity and Durability

Ensuring atomicity requires the DBMS to be able to undo the effect of earlier
statements if the entire transaction is aborted, either by the DBMS itself (if a
later statement fails) or for some external reason (system crash, power cut etc).

The basic mechanism used for this is that the DBMS maintains a log of all
changes to the database. Every action that causes a change to the state of the
database is first recorded in the logfile, which is then saved to disk. Finally the
new state of the database is written to disk.

Gordon Royle (UWA) Transactions 12 / 34

ACID

Write Ahead Log

The property that changes are logged before they are actually made on disk is
called write ahead log.

If a transaction is aborted, then the DBMS can consult the log in order to
determine which actions need to be undone in order to restore the database to
its initial state.

In the case of a system crash, the recovery manager uses the log to determine
whether there are any completed transactions that still need to be written to
disk.

Complete details of the logging process and the recovery manager are
complicated and require a detailed understanding of the physical aspects of
computers

Gordon Royle (UWA) Transactions 13 / 34

Interleaving transactions

Interleaving

There would be no problem with isolation if the DBMS were able to simply
run each transaction to completion at a time before starting the next one.

However in practice, it is vital to interleave the actions of transactions in order
for the system to be usable in practice.

T1 T2Time

End

Action 3

Action 2
Action 1

End
Action 3

Action 2
Action 1

Gordon Royle (UWA) Transactions 14 / 34

Interleaving transactions

Motivation for Interleaving

Interleaving transactions (properly) allows multiple users of the database to
access it at the same time.

While one transaction is performing an I/O task, another one can perform a
CPU-intensive task thus maximising the throughput of the system.

Strict serial execution of transactions would be impractical because large
numbers of short transactions would become “queued up” behind a long
running transaction waiting for it to finish.

Thus managing a collection of interleaved transactions is a fundamental task
for a DBMS.

Gordon Royle (UWA) Transactions 15 / 34

Interleaving transactions

Notation

We use the notation R(O) and W(O) to indicate the actions of reading a
database object O and writing a database object O.

Then a transaction can be considered to be a sequence of reading and writing
actions ending when the transaction commits.

T1 T2Time

Commit
W(B)
R(B)

W(A)
R(A)

Commit
W(A)
R(A)

Gordon Royle (UWA) Transactions 16 / 34

Interleaving transactions

Interleaving Anomalies

There are a variety of anomalies that can arise from an unfortunate choice of
schedule for interleaved transactions.

Each of these anomalies could leave the database in an inconsistent state that
could not arise if the two transactions were not interleaved.

Dirty Reads

Nonrepeatable Reads

Phantoms

Gordon Royle (UWA) Transactions 17 / 34

Interleaving transactions

Dirty Reads

A dirty read occurs when one transaction reads a database value that has been
altered by a transaction that has not yet committed.

Two major problems can arise from dirty reads

The database may be in a temporarily inconsistent state due to the
partially completed transaction.

The partially completed transaction may subsequently be aborted
restoring the value to its original state.

Gordon Royle (UWA) Transactions 18 / 34

Interleaving transactions

Dirty Read Example

Suppose that T1 transfers $100 from account A to account B, while T2 adds
5% interest to each account, and the following schedule is used.

T1 T2Time

Commit
W(B)
R(B)

W(A)
R(A)

Commit
W(B)
R(B)
W(A)
R(A)

Gordon Royle (UWA) Transactions 19 / 34

Interleaving transactions

Dirty Read Example cont.

If A and B have a $1000 balance initially then this schedule would proceed as
follows:

T1 deducts $100 from A so balance is $900.

T2 adds 5% interest to A so balance is $945.

T2 adds 5% interest to B so balance is $1050.

T1 adds $100 to B so balance is $1150.

Neither of the two possible serial schedules (i.e. T1 first, then T2 or vice versa)
would give these values, and in fact $5 interest has been lost.

The fundamental problem is that T1 put the DB into an inconsistent state, and
T2 used the inconsistent values before T1 could restore the DB.

Gordon Royle (UWA) Transactions 20 / 34

Interleaving transactions

Unrepeatable Reads

An unrepeatable read is essentially the dirty-read problem in reverse order in
that a value gets changed by another transaction after it has been read, rather
than before.

In this situation, transaction T1 reads a value which is then changed by T2. If
T1 subsequently re-reads the value then it gets a different value, even though it
hasn’t changed it.

This violates the isolation property because transaction T1 should be able to
complete as though it is the only transaction currently executing.

Gordon Royle (UWA) Transactions 21 / 34

Interleaving transactions

Phantoms

A phantom is a variant of the unrepeatable read problem that occurs when one
transaction performs a SELECT statement with some selection criteria, and
then subsequently another transaction inserts a new row.

If the first transaction now uses the same criteria again for a subsequent
UPDATE statement, then a new row will suddenly appear, known as a
phantom row.

Gordon Royle (UWA) Transactions 22 / 34

Interleaving transactions

Schedules

A schedule (of interleaved statements) is called serializable if its effect on any
consistent database instance is equivalent to running the transactions in some
serial order.

A schedule is called recoverable if a transaction T2 that reads values changed
by T1 only commits after T1 commits.

The job of the DBMS is to ensure that the only allowed schedules are
serializable and recoverable.

Gordon Royle (UWA) Transactions 23 / 34

Interleaving transactions

Serializable . . .

This schedule is serializable because if both transactions commit as shown,
then the effect is the same as running T1 and then T2.

T1 T2Time

Commit
W(B)
R(B)

W(A)
R(A)

Commit

W(C)
R(C)

W(A)
R(A)

Gordon Royle (UWA) Transactions 24 / 34

Interleaving transactions

Locking

The main way in which a DBMS ensures that only serializable, recoverable
schedules are allowed is through locking protocols.

A lock is a flag, or indicator, that can be attached to a database object
indicating that it is in use by a transaction; a second transaction wishing to use
the same DB object may have to wait until the first transaction has finished it.

A locking protocol is a set of rules that determine what types of lock to use in
particular situations.

Gordon Royle (UWA) Transactions 25 / 34

Interleaving transactions

Strict Two-Phase Locking

The most widely used locking protocol is Strict Two-Phase Locking (Strict
2PL) which uses two rules.

A transaction that wishes to read an object first requests a shared lock on
that object, while a transaction that wishes to modify an object first
requests an exclusive lock on that object.

All locks held by a transaction are released when the transaction
completes (commits or aborts).

Gordon Royle (UWA) Transactions 26 / 34

Transactions in MySQL

InnoDB

The InnoDB database engine, which currently (in MySQL 5.7) is the default
one that is used if the user does not specify otherwise is an ACID-compliant
engine.

A transaction can be initiated by a user with the statement

START TRANSACTION;

All statements after that will be deemed to form part of the same transaction
until one of the statements

COMMIT;

or

ROLLBACK;

occurs.
Gordon Royle (UWA) Transactions 27 / 34

Transactions in MySQL

Example

Suppose students are forming project groups and being entered into the
following database table.

CREATE TABLE groups(
id INT,
sNum INT,
UNIQUE(sNum));

The UNIQUE keyword will ensure that no student accidentally ends up
allocated to more than one group.

Gordon Royle (UWA) Transactions 28 / 34

Transactions in MySQL

Initial data

Suppose that the first group has been entered:

SELECT * FROM groups;
+------+------+
| id | sNum |
+------+------+
| 1 | 1537 |
| 1 | 1433 |
+------+------+

and that the second proposed group comprises students 1010 and 1537; of
course 1537 is already in a group and so adding this group should fail.

Gordon Royle (UWA) Transactions 29 / 34

Transactions in MySQL

Use a transaction

START TRANSACTION;
INSERT INTO groups VALUES(2,1010);
INSERT INTO groups VALUES(2,1537);
ERROR 1062 (23000): Duplicate entry ’1537’ for key 1

The first student was correctly added, but the second violates the key
constraint — now the entire transaction can be aborted by issuing the
ROLLBACK statement.

ROLLBACK;

SELECT * FROM groups;
+------+------+
| id | sNum |
+------+------+
| 1 | 1537 |
| 1 | 1433 |
+------+------+

Gordon Royle (UWA) Transactions 30 / 34

Transactions in MySQL

Rolling Back

In addition to explicitly issuing a ROLLBACK statement, this will happen
automatically if the client becomes disconnected before the transaction is
committed. Therefore critical transactions will never get left half-done.

There is also the facility to partially roll-back a transaction to an intermediate
“checkpoint” that is declared inside a transaction.

SAVEPOINT doneOne;

If something goes wrong in the next few statements, the user can

ROLLBACK TO SAVEPOINT doneOne;

rather than rolling back the entire transaction.

Gordon Royle (UWA) Transactions 31 / 34

Transactions in MySQL

Isolation Levels

MySQL permits the user to choose how “isolated” they wish each transaction
to be by choosing between

READ UNCOMMITTED

READ COMMITTED

REPEATABLE READ

SERIALIZABLE

The user can set the isolation level on a per-session or even per-transaction
basis, using statements such as:

SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED

Gordon Royle (UWA) Transactions 32 / 34

Transactions in MySQL

Isolation levels

The READ UNCOMMITTED and READ COMMITTED isolation levels
determine when a transaction will see a value that has been changed by
another transaction — either immediately or only after the other transaction
has committed.

The default isolation level of REPEATABLE READ guarantees that a
transaction will get the same results each time it issues the same SELECT
statement. (MySQL also guarantees that REPEATABLE READ prevents
phantoms.)

The top level of isolation, SERIALIZABLE is essentially like REPEATABLE
READ with minor differences to exactly which statements the guarantee
applies to.

Gordon Royle (UWA) Transactions 33 / 34

Transactions in MySQL

Isolation Level Summary

This table summarizes the anomalies that can or cannot arise at the different
isolation levels.

Level Dirty Read Unrepeatable Read Phantom
READ UNCOMMITTED Yes Yes Yes
READ COMMITTED No Yes Yes
REPEATABLE READ No No No1

SERIALIZABLE No No No

1MySQL-specific
Gordon Royle (UWA) Transactions 34 / 34

	ACID
	Interleaving transactions
	Transactions in MySQL

