Good Style for Java Programmers

A major goal of any software developer should be to write consistently clear, high
guality, maintainable code. This is not always easy and requires a certain amount of
discipline at the best of times. One way to help achieve high quality code is via the
use of coding standards.

Coding standards are a time-honored and widely respected programming best
practice. However, they are not always easy to put into action. Coding standards lay
out rules and recommendations about the way code should be written and also
enshrine good coding habits. Recently, coding standards have enjoyed renewed
importance and visibility in software development, as they have been promoted as a
key best practice of agile development.

Different companies and developers use different coding standards. One can argue
over which coding standards are superior, however, the most important thing is to
use a coding standard. This is especially important when working in a team project in
order to promote consistency of coding style throughout the project. This allows any
team member to quickly come up to speed on code written by other team members.

Keeping to a style guide requires a bit of discipline on the part of the programmer.
Unlike syntax errors or logical errors, your program will still run with style errors.
However, it will be hard to manage and maintain and is more likely to contain logical
errors.

This task of detecting and fixing style errors is made much easier if a computer
program is used to check that all style rules have been followed.

The CSSE style guide is supported by an open source program called Checkstyle.
Checkstyle is easy to configure with different rule sets, and for this reason Checkstlye
is widely used in industry for professional software development as well as being
used for teaching programming. You can find out more about this tool at the main
Checkstyle project page at http://checkstyle.sourceforge.net/

In this unit we will use coding standards based on the Java conventions,

and the Checkstyle plug-in for BlueJ will check most of these rules automatically.
Details about the Checkstyle rules used in CITS1001, together with downloads and
installation instructions are available from
http://www.csse.uwa.edu.au/UWAJavaTools/checkstyle/

The programming style guide used in CITS1001 is based on the Barnes and Kolling
Objects First with Java - Style Guide Version 2.0 from
www.bluej.org/objects-first/styleguide.html

Many of these rules in turn are based on the Code Conventions for the Java
Programming Language available from
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html




This tutorial gives you a guided tour for using Checkstyle in Bluel.

The BlueJ Checkstyle plugin was developed by Rick Giles and Stephen Edwards. The
latest version 5.4.0 is available from
http://sourceforge.net/projects/bluejcheckstyle/files/

We shall use a version of the lab-classes project from Chapter 1 of the BlueJ book.
This version has been changed so that we can use it to illustrate how to detect and
correct style violations.

Open the project lab-classes-with-style-errors and then run Tools > Checkstyle.

You will see a new window with a list of your classes. Clicking on a class name shows
you the checkstyle errors within that class, each with a line number in the code that
shows where the error was detected. You should see the line numbers when you
open a class in the BluelJ editor. If not go Preferences > Editor > Display and tick the
Display Line Numbers option.

We shall now demonstrate the different types of style errors one by one.
Naming conventions
Using the naming conventions makes your code easier to read and navigate.

The project has 10 naming convention errors. You can fix these by renaming
variables to meet standard Java conventions: Class names start with a capital letter,
everything else with a lower case letter, except constants (static final variables) that
are all upper case letters with underscores as needed.

Hint: use the BluelJ editor Find and Replace feature (with Match Case) to ensure you
change all copies of a variable.

14 19 Variable 'name' must be private and have accessor methods.

18 16 Il}st.ance variable name 'StudyCredits' should start with a lower case letter and use only letters and
digits

18 16 Variable 'StudyCredits' must be private and have accessor methods.

23 29 Constant name 'maxcredits' should be all upper case letters, digits and underscores

41 44 Parameter name 'StudentID' should start with a lower case letter and use only letters and digits

51 17 Method name 'ChangeName' should start with a lower case letter and use only letters and digits

9 14 Class name 'labClass' should start with a capital letter and use only letters and digits
11 19 Variable 'instructor' must be private and have accessor methods.

Instance variable name 'TimeAndDay' should start with a lower case letter and use only letters
and digits

Parameter name 'TimeAndDayString' should start with a lower case letter and use only letters and
digits

13 20

71 32

Layout conventions



Another commonly used convention is the placement of curly brackets: on a new
line for class and method definitions and on the same line for code blocks.
Also, all operators should be surrounded by white space.

87 35 '+'is not preceded with whitespace.
87 36 '+'is not followed by whitespace.

19 27 '=='"is not preceded with whitespace.
19 29 '=='"is not followed by whitespace.
20 9 '{' should be on the previous line.

71 50 '{ should be on a new line.

78 54 '{" should be on a new line.

Documentation

It is good coding practice to document your code. This allows any team
member to quickly come up to speed on what the code is supposed to be
doing. A further aid is to have the documentation presented in a standardised
way so team members can find specific information faster.

In this unit, we will be using Javadoc which is the de-facto industry standard
for documenting Java classes.

When you create a class in Blued it has a default Javadoc comment
describing the class at the beginning of the file. You should always update
this comment by writing a short description of what the class does, and
including your name (and the names of any earlier authors) and a version
number or date. This has been done correctly for the Student class but needs
to be fixed for the LabClass.

Every method should also have a Javadoc comment. For full Javadoc
compliance every parameter and return value must be commented, as well as
a line describing the method. But we have relaxed this requirement to require
just that there is a Javadoc comment for each method. Notice the comments
in all the example code you study and copy this style to write meaningful
comments in your own code.

Line matches the illegal pattern 'Javadoc: Please replace the default comment with your own
descriptive comment for this class'.

Line matches the illegal pattern 'Javadoc: Please replace the default comment with your own
name(s) after the @author tag'.

Line matches the illegal pattern 'Javadoc: Please replace the default comment with the current date
after the @version tag'.

17 5 Missing a Javadoc comment.

50 5 Missing a Javadoc comment.

Language use restrictions



Declaration order, private fields, imports
The project has the following language use errors.

23 5 Static variable definition in wrong order.

23 5 Variable access definition in wrong order.

23 29 Constant name 'maxcredits' should be all upper case letters, digits and underscores
28 5 Static variable definition in wrong order.

28 5 Variable access definition in wrong order.

415 Constructor definition in wrong order.

1 0 Using the '.*' form of import should be avoided - java.util .*.

32 5 Constructor definition in wrong order.

Common coding problems

These warnings alert you to problems you probably may not even think of making to
start with; so | am not going to trigger them now, except for one. When you first
start using logical conditions in code, it is easy to make the logic overly complicated.
For example, see the error in the classFull() method of LabClass.

Checkstyle checks for a number of these situations, and warns you that the code
could be simplified. In this case simply return (students.size() >= capacity); is better
style.

52 9 Suggestion: Avoid unnecessary if..then..else statements when returning a boolean

Practice

Keeping your code free of style errors is not onerous if you run the Checkstyle
system often to correct errors as you go. After a while, it will become second nature
to write code that meets the recommendations. As you have already seen with
syntax checking, it is not a good idea to write pages of code before checking it.
Always check as you go.

Keep the CSSE-StyleGuide nearby to help you track down and fix errors.



