
PROGRAMMING
PATTERNS AND
PROCESS
CITS1001

Motivation
• “The labs were all really interesting and well
paced. Large seemingly impossible tasks were
broken down into manageable chunks.”
•  CITS1001 student 2012

• Question addressed in this lecture: how to break
“large, seemingly impossible tasks” into
manageable chunks.

3

Scope of this lecture
• What are programming patterns?
• Why use patterns ?
•  Some useful elementary patterns:

•  Whether-or-not
•  Process-all-items
•  Variable use patterns

•  Program development processes:
•  Waterfall, Agile, STREAM

PROGRAMMING
PATTERNS

Compare and Contrast
public void depositA(int amount)
{
 if (amount > 0) {
 balance = balance + amount;

 if (balance > maxBalance) {

 maxBalance = balance;
 }
 }
}

public void depositB(int amount)
{

if (amount < 0) {
 balance = balance;

 } else {
 balance += balance;
}

 if (maxBalance < balance) {
 maxBalance = balance;
 }
}

Programming Patterns
• Programming patterns correspond to fragments of code

that accomplish common programming goals
• Recognising and applying patterns is one of skills that

distinguishes expert programmers from novices

Whether Or Not Selection
•  Bergen describes the Whether Or Not pattern as follows:

“You are in a situation in which some action may be
appropriate or inappropriate depending on some testable
condition. ... You don't need to repeat the action, only to decide
Whether Or Not it should be done. There are no other actions
to do instead of this one. You want to write simply understood
code.”

•  For example,

if (amount > balance) { !
!balance += amount ; !

}

Whether Or Not Selection (cont)

• Barnes and Kölling use a variant of the Whether Or Not
pattern in which an else branch containing only print
statement(s) is used to inform the user of the error
condition. For example,

if (amount > balance) { !
!balance += amount ; !

} else { !
!System.out.println("amount must be >0"); !

} !

Process All Items
• Astrachan and Wallingford describe the Process All Items

pattern as: “The items are stored in an array a. Use a
definite loop to process all the items.”.

•  For example,
 for (int k=0; k < a.length; k++) { !

!a[k] = a[k]*2; !
 } !

• Barnes and Kölling use a for-each version of this pattern
for collections (and arrays since Java 5)

!for (Atype ak : a) { process ak; } !

Temporary Variables
• Kent Beck explains “Temporary variables let you store and

reuse the value of expressions. They can be used to
improve the performance or readability of methods.”

• See http://c2.com/ppr/temps.html for
•  Temporary variable
•  Collecting temporary variable
•  Caching temporary variable
•  Explaining temporary variable
•  Reusing temporary variable
•  Role suggesting temporary variable name

Temporary Variable Pattern Examples
•  Collecting

!int sum = 0;!
!for (int ai : a) { sum = sum + ai; }

•  Caching
!int avg = average(a); int var = 0;!
!for (int ai : a) { !
! var = var + Math.Pow(ai-avg, 2); !
!}

•  Explaining
!if (a[j] < min) {!
! min = a[j];!
! swappos = j;!

 }!

Further Reading
•  Loop patterns: Definite process all items, O. Astrachan and

E. Wallingford. 1998. Retrieved March 2012 from http://
www.cs.duke.edu/ ola/patterns/plopd/loops.html

•  Portland pattern repository: Temporary variables, K. Beck.
1995. Retrieved March 2012 from http://c2.com/ppr/temps.html

•  Patterns for Selection Version 4, J. Bergin., 1999. Retrieved
March 2009 from http://csis.pace.edu/ bergin/patterns/
Patternsv4.html

•  Design Patterns: Elements of Reusable Object-Oriented
Software, Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, (the “Gang of Four”), Addison Wesley, 2004

SOFTWARE
DEVELOPMENT PROCESS

14

Outline
•  Software Development Processes

•  top down; bottom up; islands of functionality
•  Stepwise improvement activities

•  restructure; refine; extend
•  STREAM: a systematic process for novices

•  Reference:
STREAM: A First Programming Process,
M.E. CASPERSEN and M. KOLLING,
ACM Transactions on Computing Education, 9(1), March 2009

•  http://dl.acm.org/citation.cfm?id=1513597

15

Some important terms

• Process (n)
•  a series of actions or operations designed to achieve an

end
• Product (n)

•  something produced by a natural or artificial process
•  a saleable or marketable commodity

• Lifecycle (n)
•  the series of stages in form and functional activity

through which an organism passes during its lifetime

16

Software Development Lifecycle (SDLC)
• A model for the process of developing SW
•  Three standard models (you should know)

•  opportunistic (aka chaotic)
•  waterfall
•  iterative (agile)

• All SDLCs involve steps for requirements, design,
implementation and quality assurance

17

Chaotic (opportunistic) SDLC

Think of Idea
for

Improvement

Modify
Until

Satisfied

First
Prototype

18

Chaotic approach (not recommended)

• Does not acknowledge the importance of working
out the requirements and the design before
implementing a system

• Since there are no plans, there is nothing to aim
towards, or measure against

• No explicit recognition of the need for systematic
testing or other forms of quality assurance.

• Leads to … very high cost of developing and
maintaining software with the opportunistic
approach

19

Top Down Development
Waterfall Model

20

Waterfall model limitations
•  The model implies that you should attempt to complete

a given stage before moving on to the next stage
•  Does not account for the fact that requirements constantly

change.
•  It also means that customers can not use anything until the

entire system is complete.
•  The model makes no allowances for prototyping.
•  It implies that you can get the requirements right by

simply writing them down and reviewing them.
•  The model implies that once the product is finished,

everything else is maintenance.

21

Agile Development Techniques

• Test Driven Development – because each
iteration must deliver working software it must
work.

• Short iterations – from 2 weeks to 2 months.
• Strong customer involvement
• Adaptable process allowing for requirements to
• Change

• Agile and Waterfall are opposite ends of the
“control” spectrum

22

Agile Development

Bottom Up Development

•  From 1990s OO programming
•  Lower level components developed first
• Higher-level functionality slowly built on top of the

low-level modules

23

Growing Islands of Functionality

•  Initially implement small subsets of functionality
completely (from the user interface down to the available
machine)

•  Function is gradually increased
by growing
the available
islands of
implementation

24

STEPWISE
DEVELOPMENT

25

Stepwise Development Activities
• Extend the specification to cover more (use-)
cases;

• Refine abstract code to executable code to meet
the current specification;

• Restructure improves nonfunctional aspects of a
solution without altering its observable behavior:
design improvements through refactoring,
efficiency optimisation, or portability
improvements.

26

Stepwise Development

27

STREAM
DEVELOPMENT
PROCESS

28

Reference:
STREAM: A First Programming Process,
M.E. Caspersen and M. Kölling,
ACM Transactions on Computing Education, 9(1), March 2009
http://dl.acm.org/citation.cfm?id=1513597

STREAM summary (1)

• Step 1: Stubs
•  Create a Skeleton Class with Method Stubs

• Step 2: Tests
•  Ensure that Tests Are Available

• Step 3: Representations
•  Consider Alternative Representations

• Step 4: Evaluation
•  Evaluate the Alternative Representations

29

STREAM summary (2)
•  Step 5: Attributes

•  Define Instance Fields

•  Step 6: Methods
•  Implement the Methods

while there is an unfinished method:
 Pick an unfinished method;
 //Implement the method
 while not done:
 improve the method;
 test;

30

