

Copyright © M. Kölling 27

7 Debugging

This section introduces the most important aspects of the debugging functionality in

BlueJ. In talking to computing teachers, we have very often heard the comment that

using a debugger in first year teaching would be nice, but there is just no time to

introduce it. Students struggle with the editor, compiler and execution; there is no

time left to introduce another complicated tool.

That’s why we have decided to make the debugger as simple as possible. The goal is

to have a debugger that you can explain in 15 minutes, and that students can just use

from then on without further instruction. Let’s see whether we have succeeded.

First of all, we have reduced the functionality of traditional debuggers to three tasks:

• setting breakpoints

• stepping through the code

• inspecting variables

In return, each of the three tasks is very simple. We will now try out each one of

them.

To get started, open the project debugdemo, which is included in the examples

directory in the distribution. This project contains a few classes for the sole purpose of

demonstrating the debugger functionality – they don’t make a lot of sense otherwise.

7.1 Setting breakpoints

Summary: To set a breakpoint, click in the breakpoint area to the left of the text in the

editor.

Setting a breakpoint lets you interrupt the execution at a certain point in the code.

When the execution is interrupted, you can investigate the state of your objects. It

often helps you to understand what is happening in your code.

In the editor, to the left of the text, is the breakpoint area (Figure 16). You can set a

breakpoint by clicking into it. A small stop sign appears to mark the breakpoint. Try

this now. Open the class Demo, find the method loop, and set a breakpoint somewhere

in the for loop. The stop sign should appear in your editor.

 Debugging

Copyright © M. Kölling 28

Figure 16: A breakpoint

When the line of code is reached that has the breakpoint attached, execution will be

interrupted. Let’s try that now.

Create an object of class Demo and call the loop method with a parameter of, say, 10.

As soon as the breakpoint is reached, the editor window pops up, showing the current

line of code, and a debugger window pops up. It looks something like Figure 17.

Figure 17: The debugger window

The highlight in the editor shows the line that will be executed next. (The execution is

stopped before this line was executed.)

Erik Owen
Do this in the main method of class demo.

 Debugging

Copyright © M. Kölling 29

7.2 Stepping through the code

Summary: To single-step through your code, use the Step and Step Into buttons in the

debugger.

Now that we have stopped the execution (which convinces us that the method really

does get executed and this point in the code really does get reached), we can single-

step through the code and see how the execution progresses. To do this, repeatedly

click on the Step button in the debugger window. You should see the source line in

the editor changing (the highlight moves with the line being executed). Every time

you click the Step button, one single line of code gets executed and the execution

stops again. Note also that the values of the variables displayed in the debugger

window change (for example the value of sum.) So you can execute step by step and

observe what happens. Once you get tired of this, you can click on the breakpoint

again to remove it, and then click the Continue button in the debugger to restart the

execution and continue normally.

Let’s try that again with another method. Set a breakpoint in class Demo, method

carTest(), in the line reading

places = myCar.seats();

Call the method. When the breakpoint is hit, you are just about to execute a line that

contains a method call to the method seats() in class Car. Clicking Step would step

over the whole line. Let’s try Step Into this time. If you step into a method call, then

you enter the method and execute that method itself line by line (not as a single step).

In this case, you are taken into the seats() method in class Car. You can now happily

step through this method until you reach the end and return to the calling method.

Note how the debugger display changes.

Step and Step Into behave identically if the current line does not contain a method

call.

7.3 Inspecting variables

Summary: Inspecting variables is easy – they are automatically displayed in the

debugger.

When you debug your code, it is important to be able to inspect the state of your

objects (local variables and instance variables).

Doing it is trivial – most of it you have seen already. You do not need special

commands to inspect variables; static variables, instance variables of the current

object and local variables of the current method are always automatically displayed

and updated.

You can select methods in the call sequence to view variables of other currently

active objects and methods. Try, for example, a breakpoint in the carTest() method

Erik Owen
Also do this in the main method

 Debugging

Copyright © M. Kölling 30

again. On the left side of the debugger window, you see the call sequence. It currently

shows

Car.seats

Demo.carTest

This indicates that Car.seats was called by Demo.carTest. You can select

Demo.carTest in this list to inspect the source and the current variable values in this

method.

If you step past the line that contains the new Car(...) instruction, you can observe

that the value of the local variable myCar is shown as <object reference>. All values

of object types (except for Strings) are shown in this way. You can inspect this

variable by double-clicking on it. Doing so will open an object inspection window

identical to those described earlier (section 4.1). There is no real difference between

inspecting objects here and inspecting objects on the object bench.

7.4 Halt and terminate

Summary: Halt and Terminate can be used to halt an execution temporarily or

permanently.

Sometimes a program is running for a long time, and you wonder whether everything

is okay. Maybe there is an infinite loop, maybe is just takes this long. Well, we can

check. Call the method longloop() from the Demo class. This one runs a while.

Now we want to know what’s going on. Show the debugger window, if it is not

already on screen.

Now click the Halt button. The execution is interrupted just as if we had hit a

breakpoint. You can now step a couple of steps, observe the variables, and see that

this is all okay – it just needs a bit more time to complete. You can just Continue and

Halt several times to see how fast it is counting. If you don’t want to go on (for

example, you have discovered that you really are in an infinite loop) you can just hit

Terminate to terminate the whole execution. Terminate should not be used too

frequently – you can leave perfectly well written objects in an inconsistent state by

terminating the machine, so it is advisable to use it only as an emergency mechanism.

