1. Find the corresponding Hopfield net with binary values \{0, 1\} to solve the eight rooks problem where each rook has to be positioned in a different row and column to the other in order to avoid a mutual attack. Hint: guess first the pertinent energy to be minimized and then transform it to the canonical Hopfield energy form (a two dimensional multi-flip-flop problem). Does the canonical energy form give the correct answer for the net architecture, weights and biases? If not, change them accordingly.

2. Show that for the 3 neuron Hopfield net with biases \(\theta_1 = \theta_2 = \theta_3 = 0.5 \) and synaptic weights \(\omega_{12} = \omega_{21} = \omega_{32} = \omega_{23} = 1, \omega_{13} = \omega_{31} = -1 \) and \(\omega_{11} = \omega_{22} = \omega_{33} = 0 \) (see also Example 2 from Lecture on Hopfield Nets Part B) we can reach global minimum \((-1, -1, -1)\) of the corresponding energy function e.g. by updating the net asynchronously at \(t = 2 \) the second neuron, at \(t = 3 \) the first neuron, at \(t = 4 \) the second neuron and at \(t = 5 \) the third neuron. We assume that at \(t = 1 \) the initial net state is \((1, -1, 1)\). How can we be sure that \((-1, -1, -1)\) is a stable state?

3. Consider partially specified non-threshold Boolean function \(f \) defined as \(f(1, 1, 1) = 1, f(0, 1, 0) = 0, f(0, 0, 0) = 1, f(1, 0, 0) = 1 \) and \(f(0, 0, 1) = 0 \). Follow the Kashyap Th. from the lecture (see also the pertinent lecture example) and construct the separating \(\phi \)-surface. Verify whether the \(\phi \)-surface determined by the equation \(\phi(x_1, x_2, x_3) = 0 \) correctly separates the function \(f \).

4. (a) Show that partially defined Boolean switching function: \(f(0, 0, 0) = 1, f(1, 0, 0) = 0, f(0, 1, 0) = 0, f(1, 1, 0) = 1, f(0, 1, 1) = 1 \) and \(f(1, 1, 1) = 1 \) is not linearly separable function. Use at least two alternative schemes to prove it (e.g. unateness).

(b) Are XOR and not(XOR) comparable Boolean Switching functions?

(c) Add to \(f \) defined in (a) \(f(0, 0, 1) = 1 \) and \(f(0, 1, 0) = 1 \). Show by using monotonicity criterion that \(f \) is not linearly separable. Consider now \(g(x_1, x_2) = AND(x_1, x_2) \). Show first by using complete monotonicity criterion and then by summability test that \(g \) is linearly separable. Which criterion is stronger and why?

5. Apply Kashyap Theorem to the linearly separable Boolean Switching function such as \(AND(x_1, x_2) \). Show that the resulting polynomial is not a linear separator. Infer now the applicability of the Kashyap Th. for the LTG and PTG gates.

Assoc. Prof. Ryszard Kozera