Overview

- Introduce the notion of a paradigm
- Provide an overview of the many different kinds of interfaces
 - highlight the main design and research issues for each of the different interfaces
- Consider which interface is best for a given application or activity

Paradigms

- Refers to a particular approach that has been adopted by a community in terms of shared assumptions, concepts, values and practices
 - Questions to be asked and how they should be framed
 - Phenomena to be observed
 - How findings from experiments are to be analyzed and interpreted

Paradigms in HCI

- The predominant 80s paradigm was to design user-centred applications for the single user on the desktop
- Shift in thinking occurred in the mid 90s
- Many technological advances led to a new generation of user–computer environments
 - e.g., virtual reality, multimedia, agent interfaces, ubiquitous computing
- Effect of moving interaction design ‘beyond the desktop’ resulted in many new challenges, questions, and phenomena being considered

Ubicomp

- Would radically change the way people think about and interact with computers
- Computers would be designed to be embedded in the environment
- Major rethink of what HCI is in this context

New thinking

- How to enable people to access and interact with information in their work, social, and everyday lives
- Designing user experiences for people using interfaces that are part of the environment with no controlling devices
- What form to provide contextually-relevant information to people at appropriate times and places
- Ensuring that information, that is passed around via interconnected displays, devices, and objects, is secure and trustworthy
Interface types

- Many, many kinds now

1980s interfaces
- Command
- WIMP/GUI

1990s interfaces
- Advanced graphical (multimedia, virtual reality, information visualization)
- Web
- Speech (voice)
- Pen, gesture, and touch
- Appliance

2000s interfaces
- Mobile
- Multimodal
- Shareable
- Tangible
- Augmented and mixed reality
- Wearable

Command interfaces

- Commands such as abbreviations (e.g., `ls`) typed in at the prompt to which the system responds (e.g., listing current files)
- Some are hard wired at keyboard, e.g., delete
- Efficient, precise, and fast
- Large overhead to learning set of commands

Research and design issues

- Form, name types and structure are key research questions
- Consistency is most important design principle
 - e.g., always use first letter of command
- Command interfaces popular for web scripting

WIMP/GUI interfaces

- Xerox Star first WIMP -> rise to GUIs
- **Windows**
 - could be scrolled, stretched, overlapped, opened, closed, and moved around the screen using the mouse
- **Icons**
 - represented applications, objects, commands, and tools that were opened when clicked on
- **Menus**
 - offering lists of options that could be scrolled through and selected
- **Pointing device**
 - a mouse controlling the cursor as a point of entry to the windows, menus, and icons on the screen

GUIs

- Same basic building blocks as WIMPs but more varied
 - Color, 3D, sound, animation,
 - Many types of menus, icons, windows
- New graphical elements, e.g.,
 - toolbars, docks, rollovers

Windows

- Windows were invented to overcome physical constraints of a computer display, enabling more information to be viewed and tasks to be performed
- Scroll bars within windows also enable more information to be
- Multiple windows can make it difficult to find desired one, so techniques used
 - Listing, iconising, shrinking
Apple’s shrinking windows

Selecting a country from a scrolling window

Is this method any better?

Research and design issues
- Window management – enabling users to move fluidly between different windows (and monitors)
- How to switch attention between them to find information needed without getting distracted
- Design principles of spacing, grouping, and simplicity should be used

Menus
- A number of menu interface styles
 - flat lists, drop-down, pop-up, contextual, and expanding ones, e.g., scrolling and cascading
- Flat menus
 - good at displaying a small number of options at the same time and where the size of the display is small, e.g., iPods
 - but have to nest the lists of options within each other, requiring several steps to get to the list with the desired option
 - moving through previous screens can be tedious

iPod flat menu structure
Expanding menus

- Enables more options to be shown on a single screen than is possible with a single flat menu
- More flexible navigation, allowing for selection of options to be done in the same window
- Most popular are cascading ones
 - primary, secondary and even tertiary menus
 - downside is that they require precise mouse control
 - can result in overshooting or selecting wrong options

Cascading menu

Contextual menus

- Provide access to often-used commands that make sense in the context of a current task
- Appear when the user presses the Control key while clicking on an interface element
 - e.g., clicking on a photo in a website together with holding down the Control key results in options ‘open it in a new window,’ ‘save it,’ or ‘copy it’
- Helps overcome some of the navigation problems associated with cascading menus

Research and design issues

- What are best names/labels/phrases to use?
- Placement in list is critical
 - Quit and save need to be far apart
- Many international guidelines exist emphasizing depth/breadth, structure and navigation
 - e.g. ISO 9241

Icon design

- Icons are assumed to be easier to learn and remember than commands
- Can be designed to be compact and variably positioned on a screen
- Now populate every application and operating system
 - represent desktop objects, tools (e.g., paintbrush), applications (e.g., web browser), and operations (e.g., cut, paste, next, accept, change

Icons

- Since the Xerox Star days icons have changed in their look and feel:
 - black and white -> color, shadowing, photorealistic images, 3D rendering, and animation
- Many designed to be very detailed and animated making them both visually attractive and informative
- GUIs now highly inviting, emotionally appealing, and feel alive
Icon forms

- The mapping between the representation and underlying referent can be:
 - similar (e.g., a picture of a file to represent the object file)
 - analogical (e.g., a picture of a pair of scissors to represent 'cut')
 - arbitrary (e.g., the use of an X to represent 'delete')

- Most effective icons are similar ones

- Many operations are actions making it more difficult to represent them
 - use a combination of objects and symbols that capture the salient part of an action

Early icons

Newer icons

Simple icons plus labels

Activity

- Sketch simple icons to represent the operations to appear on a digital camera LCD screen:
 - Delete last picture taken
 - Delete all pictures stored
 - Format memory card

Toshiba’s icons

- Which is which?
- Are they easy to understand?
- Are they distinguishable?
- What representation forms are used?
- How do yours compare?
Research and design issues

- There is a wealth of resources now so do not have to draw or invent icons from scratch
 - guidelines, style guides, icon builders, libraries
- Text labels can be used alongside icons to help identification for small icon sets
- For large icon sets (e.g., photo editing or word processing) use rollovers

Advanced graphical interfaces

- Advanced graphical interfaces exist now that extend how users can access, explore, and visualize information
 - e.g. interactive animations, multimedia, virtual environments, and visualizations
- Some designed to be viewed and used by individuals
- Others by users who are collocated or at a distance

Multimedia

- Combines different media within a single interface with various forms of interactivity
 - graphics, text, video, sound, and animations
- Users click on links in an image or text
 - another part of the program
 - an animation or a video clip is played
 - can return to where they were or move on to another place

BioBlast multimedia learning environment

Pros and cons

- Facilitates rapid access to multiple representations of information
- Can provide better ways of presenting information than can either one alone
- Can enable easier learning, better understanding, more engagement, and more pleasure
- Can encourage users to explore different parts of a game or story
- Tendency to play video clips and animations, while skimming through accompanying text or diagrams

Research and design issues

- How to design multimedia to help users explore, keep track of, and integrate the multiple representations
 - provide hands-on interactivities and simulations that the user has to complete to solve a task
 - Use ‘dynalinking,’ where information depicted in one window explicitly changes in relation to what happens in another (Scaife and Rogers, 1996).
- Several guidelines around that recommend how to combine multiple media for different kinds of task
Virtual reality and virtual environments

- Computer-generated graphical simulations providing:
 - "the illusion of participation in a synthetic environment rather than external observation of such an environment" (Gigante, 1993)
 - provide new kinds of experience, enabling users to interact with objects and navigate in 3D space
 - Create highly engaging user experiences

Pros and cons

- Can have a higher level of fidelity with the objects they represent, c.f. multimedia
- Induces a sense of presence where someone is totally engrossed by the experience
 - "a state of consciousness, the (psychological) sense of being in the virtual environment" (Slater and Wilbur, 1999)
- Provides different viewpoints: 1st and 3rd person
- Head-mounted displays are uncomfortable to wear, and can cause motion sickness and disorientation

Research and design issues

- Much research on how to design safe and realistic VRs to facilitate training
 - e.g., flying simulators
 - help people overcome phobias (e.g., spiders, talking in public)
- Design issues
 - how best to navigate through them (e.g., first versus third person)
 - how to control interactions and movements (e.g., use of head and body movements)
 - how best to interact with information (e.g., use of keypads, pointing, joystick buttons);
 - level of realism to aim for to engender a sense of presence

Which is the most engaging game of Snake?