Circle Geometry, v1.1

Lyndon While

1. Given a circle with radius \(x \) whose centre is at \(a, b \), and a circle with radius \(y \) that touches \(x \):
 \(y \)'s centre \(c, d \) satisfies \((c - a)^2 + (d - b)^2 = (x + y)^2\), i.e. \(c = a \pm \sqrt{(x + y)^2 - (d - b)^2}\)
 (or conversely \(d = b \pm \sqrt{(x + y)^2 - (c - a)^2}\)).

2. Given a circle with radius \(x \) whose centre is at \(0, 0 \), a circle with radius \(y \) that touches \(x \) and whose centre is at \(0, d \), and a circle with radius \(z \) that touches both:
 \(z \)'s centre \(e, f \) satisfies \(f = d^2 + (z + x)^2 - (z + y)^2\), \(e = \pm \sqrt{(z + x)^2 - f^2}\).

Given a circle with radius \(x \), and a tangent to \(x \):

1. if a circle on the tangent with radius \(y \) touches \(x \),
 their centres’ separation along the tangent is \(z = 2\sqrt{xy}\),

1a. conversely, a touching circle on the tangent whose centre has horizontal separation \(z \)
 has radius \(y = \frac{z^2}{4x} \),

2. the biggest circle that fits between \(x \) and \(y \) on the tangent has radius
 \(\frac{xy}{x + y + 2\sqrt{xy}} \).

Generalising (2), given two circles with radii \(y \) and \(w \) whose centres are separated by \(u \) along a common tangent, the biggest circle that fits between them on the tangent has radius
\(\frac{u^2}{4\sqrt{(y + w)^2}} \).

Given a circle with radius \(x \) whose centre is \(z \) from a right-angled corner:

1. the biggest circle that fits in the corner on \(x \)'s side has radius \(z + 2x - 2\sqrt{x(z + x)} \),

2. a touching circle whose centre is \(y \) from the corner around from \(x \) has radius \(w = \frac{y^2 - 2xy + z^2}{2(z + x)} \),

2a. conversely, if a touching circle with radius \(w \) is around the corner from \(x \),
 its centre is \(y = x + \sqrt{x^2 - z^2 + 2w(x + z)} \) from the corner.