
| 1CITS2401 Computer Analysis & Visualisation

Interpolation and curve

fitting

Lecture 9

CITS2401

Computer Analysis and Visualization

School of Computer Science and Software Engineering

| 2CITS2401 Computer Analysis & Visualisation

Summary

 Interpolation

 Curve fitting

 Linear regression (for single variables)

 Polynomial regression

 Multiple variable regression

 Non-linear terms in regression

| 3CITS2401 Computer Analysis & Visualisation

Interpolation

 Suppose you have some known data points, and you wish to predict what
other data points might be – how can you do this?

 For example:

 If at t = 1 second, distance traveled = 2m, and

 at t = 5 seconds, distance traveled = 10m ...

 What would be the distance traveled at, say, t = 3 seconds?

| 4CITS2401 Computer Analysis & Visualisation

Linear interpolation

 The simplest interpolation technique is linear interpolation:

it assumes that data follows a straight line between adjacent measurements.

| 5CITS2401 Computer Analysis & Visualisation

Linear interpolation (2)

 Assume the function
between two points is a
straight line

 Find equation of the line that
passes through the two
points

 Put a value of x in the
equation to find y

 Put a value of y in the
equation to find x

How do you find a
point in between?

X=2, Y=?

| 6CITS2401 Computer Analysis & Visualisation

Linear interpolation in python

 numpy.interp(x, xp, yp):

 xp and yp give the x and y coordinates of the data points we have

 x contains the x coordinates that we want interpolated y-values for.

| 7CITS2401 Computer Analysis & Visualisation

Linear interpolation in python – example

Linear interpolation of the sin() function:

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> x_pts = np.linspace(0, 2*np.pi, 10)

10 equidistant x coords from 0 to 10

>>> y_pts = np.sin(x_pts)

>>> x_vals = np.linspace(0, 2*np.pi, 50)

50 desired points

>>> y_vals = np.interp(x_vals, x_pts, y_pts)

>>> plt.plot(x_pts, y_pts, 'o') # plot known data points

>>> plt.plot(x_vals, y_vals, '-x') # plot interpolated points

>>> plt.show()

| 8CITS2401 Computer Analysis & Visualisation

Linear interpolation in python – example (2)

| 9CITS2401 Computer Analysis & Visualisation

Cubic spline interpolation

 Just as a linear interpolation is made up of linear segments – a cubic spline
interpolation is made of segments of cubic polynomials, whose gradients
match up at the measured data points.

 These cubic polynomials are continuous up to their 2nd derivative.

| 10CITS2401 Computer Analysis & Visualisation

Cubic spline interpolation (2)

 Using numpy and scipy, interpolation is done in 2 steps:

 scipy.interpolate.splrep(x_pts, y_pts) – returns a tuple

representing the spline formulas needed

 scipy.interpolate.splev(x_vals, splines) ("spline evaluate")
– evaluate the spline data returned by splrep, and use it to estimate y

values.

| 11CITS2401 Computer Analysis & Visualisation

Cubic spline interpolation example

>>> import numpy as np

>>> from scipy import interpolate

>>> import matplotlib.pyplot as plt

>>> x_pts = np.linspace(0, 2*np.pi, 10)

10 equidistant x coords from 0 to 10

>>> y_pts = np.sin(x_pts)

>>> splines = interpolate.splrep(x_pts, y_pts)

>>> x_vals = np.linspace(0, 2*np.pi, 50)

50 desired points

>>> y_vals = interpolate.splev(x_vals, splines)

>>> plt.plot(x_pts, y_pts, 'o') # plot known data points

>>> plt.plot(x_vals, y_vals, '-x') # plot interpolated points

>>> plt.show()

| 12CITS2401 Computer Analysis & Visualisation

Cubic spline interpolation example (2)

| 13CITS2401 Computer Analysis & Visualisation

2D interpolation

 Just as we can do linear interpolation to estimate y values given x values –
i.e. estimating a one-variable function f(x) – we can also do linear
interpolation of a two-variable function f(x,y).

| 14CITS2401 Computer Analysis & Visualisation

2D interpolation – original data (1)

 We will generate some data, and demonstrate what the original data points
look like, and the interpolated version.

from mpl_toolkits.mplot3d import axes3d, Axes3D

import matplotlib.pyplot as plt

from matplotlib import cm

import numpy as np

from matplotlib.mlab import bivariate_normal

...

| 15CITS2401 Computer Analysis & Visualisation

2D interpolation – original data (2)

...

a function to plot the surface.

x, y and z should be arrays of data

def plot_data(x, y, z):

fig = plt.figure()

#ax = fig.gca(projection='3d')

ax = Axes3D(fig)

surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm,

linewidth=0, antialiased=False)

plt.show()

| 16CITS2401 Computer Analysis & Visualisation

2D interpolation – original data (3)

>>> x_pts = np.arange(-3, 3, 1)

>>> y_pts = np.arange(-3, 3, 1)

>>> xx, yy = np.meshgrid(x_pts, y_pts)

the plotting functions require the x and

y values in a grid format

>>> zz = np.sin(xx) + np.cos(yy)

>>> plot_data(xx,yy,zz)

| 17CITS2401 Computer Analysis & Visualisation

2D interpolation – original data (4)

| 18CITS2401 Computer Analysis & Visualisation

2D interpolation – linearly interpolated data

 Now we'll perform linear interpolation.

 interpolate.interp2d(x, y, z, kind='linear') returns a

function which, when called, returns the actual interpolated values.

>>> from scipy import interpolate

>>> f = interpolate.interp2d(x_pts, y_pts, zz, kind='linear')

"kind" specifies whether we're doing linear, cubic, etc.

>>> x_vals = np.arange(-3, 3, 0.1)

>>> y_vals = np.arange(-3, 3, 0.1)

>>> xx_v, yy_v = np.meshgrid(x_vals, y_vals)

>>> zz_v = f(x_vals, y_vals)

>>> plot_data(xx_v,yy_v,zz_v)

| 19CITS2401 Computer Analysis & Visualisation

2D interpolation – linearly interpolated data (2)

| 20CITS2401 Computer Analysis & Visualisation

2D interpolation – cubic interpolated data

 Now we'll perform cubic interpolation.

 interpolate.interp2d(x, y, z, kind='linear') returns a

function which, when called, returns the actual interpolated values.

>>> from scipy import interpolate

>>> f = interpolate.interp2d(x_pts, y_pts, zz, kind='cubic')

>>> x_vals = np.arange(-3, 3, 0.1)

>>> y_vals = np.arange(-3, 3, 0.1)

>>> xx_v, yy_v = np.meshgrid(x_vals, y_vals)

>>> zz_v = f(x_vals, y_vals)

>>> plot_data(xx_v,yy_v,zz_v)

| 21CITS2401 Computer Analysis & Visualisation

2D interpolation – cubic interpolated data (2)

| 22CITS2401 Computer Analysis & Visualisation

Curve fitting

 Collected data always contains some degree of error or imprecision

 Whereas interpolation is used when we assume that all data points are
accurate and we want to infer new intermediate data points –
curve fitting is used when we want to match an analytical (or symbolic) model
to a set of measurements which may contain some error.

| 23CITS2401 Computer Analysis & Visualisation

Curve fitting (2)

 For instance, we may have data
points which seem to represent
noisy data obtained from an
underlying linear relationship – how
can we estimate or model that
underlying relationship?

| 24CITS2401 Computer Analysis & Visualisation

Linear regression

 One method of curve fitting is linear regression – it minimizes the "square of
the errors" (where the "error" is the distance each point is from the line).

(In Excel, there is a function called "SLOPE" which performs linear regression
on a set of data points, similar to the Python functions we will see here.)

| 25CITS2401 Computer Analysis & Visualisation

Polynomial regression

 Linear regression is a special case of polynomial regression –

since a line (i.e., an equation of the form ax + b) is a simple polynomial.

 But your data may not reflect a linear relationship – a polynomial of a higher
order may be a better fit.

| 26CITS2401 Computer Analysis & Visualisation

Linear regression (2)

 Both linear and non-linear polynomial regression can be done with Numpy's
polyfit function:

numpy.polyfit(x, y, degree)

 It returns the coeffficients for the polynomial;

the easiest way to then use these in code is to use the numpy.poly1d class.

>>> import numpy as np

>>> from scipy.stats import linregress

>>> x_pts = np.arange(0,6,1)

>>> y_pts = np.array([15, 10, 9, 6, 2, 0])

>>> f = np.poly1d(np.polyfit(x_pts, y_pts, 1))

linear regression

>>> x_vals = np.linspace(0, 6, 100)

>>> plt.plot(x_pts, y_pts, '.')

>>> plt.plot(x_vals, f(x_vals), '-')

| 27CITS2401 Computer Analysis & Visualisation

Linear regression (3)

| 28CITS2401 Computer Analysis & Visualisation

Polynomial regression

 If we have 6 data points, then a fifth-order polynomial will be able to give a
perfect fit for them

(i.e., there is some fifth-order polynomial on which all the data points fall
exactly).

>>> import numpy as np

>>> from scipy.stats import linregress

>>> x_pts = np.arange(0,6,1)

>>> y_pts = np.array([15, 10, 9, 6, 2, 0])

>>> f = np.poly1d(np.polyfit(x_pts, y_pts, 5))

5th-order polynomial

>>> x_vals = np.linspace(0, 6, 100)

>>> plt.plot(x_pts, y_pts, '.')

>>> plt.plot(x_vals, f(x_vals), '-')

| 29CITS2401 Computer Analysis & Visualisation

Polynomial regression (2)

| 30CITS2401 Computer Analysis & Visualisation

Interpolation and curve fitting – part 2

| 31CITS2401 Computer Analysis & Visualisation

Overview

 Multiple variable regression

 Non-linear terms in regression

| 32CITS2401 Computer Analysis & Visualisation

Multiple variable data

 In our regression examples, we have used models where a single output
variable changes with respect to a single input variable.But real data may
have multiple input variables.

 For example, the top speed of a vehicle will depend on many variables such
as engine size, weight, air resistance etc.

| 33CITS2401 Computer Analysis & Visualisation

Predictor and response variables

 The input variables are called the

 independent variables, OR

 predictor variables, OR

 experimental variables

 The output variable is referred to as the

 dependent variable, OR

 response variable, OR

 outcome variable

| 34CITS2401 Computer Analysis & Visualisation

Predictor and response variables (2)

 We can use regression to find the relationship between input and output
variables.

 We will use the following for our data points:

import numpy as np

x_pts = np.arange(-5,5,0.5)

y_pts = np.arange(-5,5,0.5)

xx, yy = np.meshgrid(x_pts, y_pts)

our dependent variable is a linear function of

x and y, plus random noise.

zz = 3*xx - 0.5*yy - 5 + 8 * np.random.normal(size=xx.shape)

| 35CITS2401 Computer Analysis & Visualisation

Predictor and response variables (3)

 We build a model – i.e., we estimate the coefficients for x, y and intercept –
by expressing our data as a matrix equation, and getting Python to give us a
"least squares" solution for it.

 The lstsq function from Numpy will return a range of information about the
solution as a tuple – the coefficients we want are the first member of that
tuple:

numpy.linalg.lstsq(independent_vars, dependent_var)

 e.g.:

model_coefficients = numpy.linalg.lstsq(independent_vars,

dependent_var)[0]

| 36CITS2401 Computer Analysis & Visualisation

Predictor and response variables (4)

 Let's see what our input data looks like:

from mpl_toolkits.mplot3d import axes3d, Axes3D

import matplotlib.pyplot as plt

from numpy.linalg import lstsq

def plot_points(x, y, z):

fig = plt.figure()

ax = fig.gca(projection='3d')

surf = ax.plot_surface(x, y, z, cmap=plt.cm.coolwarm)

ax.view_init(20, -120)

plt.show()

plot_points(xx,yy,zz)

| 37CITS2401 Computer Analysis & Visualisation

Predictor and response variables (5)

| 38CITS2401 Computer Analysis & Visualisation

Predictor and response variables (6)

 To estimate the coefficients in our underlying relationship, we will ask Python
to solve a matrix equation of the form

where D is a matrix of representing our observations of independent
variables, c are the unknown coefficients we want to estimate, and z
represents our observations of the z values.

 So that Python will estimate values of the intercept – the "-5" in our
underlying relationship – we will need a column of ones in the D matrix.

 So the equation will look like:

| 39CITS2401 Computer Analysis & Visualisation

Predictor and response variables (7)

matrix for observations of independent variables

>>> ones = [[1] * len(xx.flatten())]

>>> indep = np.column_stack([xx.flatten(), yy.flatten()] + ones)

>>> model = lstsq(indep, zz.flatten())[0]

>>> model

array([3.27248794, -0.6004752 , -5.26689769])

 Compare the estimated coefficients with the actual ones (3, -0.5 and -5).

| 40CITS2401 Computer Analysis & Visualisation

Predictor and response variables (8)

 We can plot the least squares solution:

>>> x_vals = np.arange(-5,5,0.1)

>>> y_vals = np.arange(-5,5,0.1)

>>> xx_vals, yy_vals = np.meshgrid(x_vals, y_vals)

>>> zz_vals = model[0] * xx_vals + model[1] * yy_vals + model[2]

>>> fig = plt.figure()

>>> ax = fig.gca(projection='3d')

>>> ax.plot_surface(xx_vals, yy_vals, zz_vals, cmap=plt.cm.coolwarm)

the surface is our least-squares estimate

>>> ax.scatter(xx, yy, zz)

the scatter plot shows our original data points

>>> ax.view_init(20, -120)

>>> plt.show()

| 41CITS2401 Computer Analysis & Visualisation

Predictor and response variables (9)

| 42CITS2401 Computer Analysis & Visualisation

Curve-fitting using non-linear terms in linear regression

 What if we have a non-linear relationship between our variables?

 We can actually still use linear regression, as we did in the previous
example: but in our matrix of independent variables, we'll include terms
which are a non-linear function of our observations.

>>> xx_flat = xx.flatten()

>>> yy_flat = yy.flatten()

>>> zz_flat = zz.flatten()

>>> ones = [[1] * len(xx_flat)]

>>> indep = np.column_stack([xx_flat, yy_flat,

3 * np.sin(2 * xx_flat)] + ones)

the 3rd column is *3sin(2x)*

>>> model = lstsq(indep, zz.flatten())[0]

>>> model

array([2.88268949, -0.30450846, -0.02530611, -4.46351387])

| 43CITS2401 Computer Analysis & Visualisation

Curve-fitting using non-linear terms in linear regression (2)

 As with the linear case, we can use this model to estimate z-values.

>>> x_vals = np.arange(-5,5,0.1)

>>> y_vals = np.arange(-5,5,0.1)

>>> xx_vals, yy_vals = np.meshgrid(x_vals, y_vals)

>>> zz_vals = model[0] * xx_vals +

model[1] * yy_vals +

model[2] * 3 * np.sin(2 * xx_vals) +

model[3]

>>> fig = plt.figure()

>>> ax = fig.gca(projection='3d')

>>> ax.plot_surface(xx_vals, yy_vals, zz_vals, cmap=plt.cm.coolwarm)

the surface is our least-squares estimate

>>> ax.scatter(xx, yy, zz)

the scatter plot shows our original data points

>>> ax.view_init(20, -120)

>>> plt.show()

| 44CITS2401 Computer Analysis & Visualisation

Curve-fitting using non-linear terms in linear regression (3)

