
| 1CITS2401 Computer Analysis & Visualisation

Interpolation and curve

fitting

Lecture 9

CITS2401

Computer Analysis and Visualization

School of Computer Science and Software Engineering

| 2CITS2401 Computer Analysis & Visualisation

Summary

 Interpolation

 Curve fitting

 Linear regression (for single variables)

 Polynomial regression

 Multiple variable regression

 Non-linear terms in regression

| 3CITS2401 Computer Analysis & Visualisation

Interpolation

 Suppose you have some known data points, and you wish to predict what
other data points might be – how can you do this?

 For example:

 If at t = 1 second, distance traveled = 2m, and

 at t = 5 seconds, distance traveled = 10m ...

 What would be the distance traveled at, say, t = 3 seconds?

| 4CITS2401 Computer Analysis & Visualisation

Linear interpolation

 The simplest interpolation technique is linear interpolation:

it assumes that data follows a straight line between adjacent measurements.

| 5CITS2401 Computer Analysis & Visualisation

Linear interpolation (2)

 Assume the function
between two points is a
straight line

 Find equation of the line that
passes through the two
points

 Put a value of x in the
equation to find y

 Put a value of y in the
equation to find x

How do you find a
point in between?

X=2, Y=?

| 6CITS2401 Computer Analysis & Visualisation

Linear interpolation in python

 numpy.interp(x, xp, yp):

 xp and yp give the x and y coordinates of the data points we have

 x contains the x coordinates that we want interpolated y-values for.

| 7CITS2401 Computer Analysis & Visualisation

Linear interpolation in python – example

Linear interpolation of the sin() function:

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> x_pts = np.linspace(0, 2*np.pi, 10)

10 equidistant x coords from 0 to 10

>>> y_pts = np.sin(x_pts)

>>> x_vals = np.linspace(0, 2*np.pi, 50)

50 desired points

>>> y_vals = np.interp(x_vals, x_pts, y_pts)

>>> plt.plot(x_pts, y_pts, 'o') # plot known data points

>>> plt.plot(x_vals, y_vals, '-x') # plot interpolated points

>>> plt.show()

| 8CITS2401 Computer Analysis & Visualisation

Linear interpolation in python – example (2)

| 9CITS2401 Computer Analysis & Visualisation

Cubic spline interpolation

 Just as a linear interpolation is made up of linear segments – a cubic spline
interpolation is made of segments of cubic polynomials, whose gradients
match up at the measured data points.

 These cubic polynomials are continuous up to their 2nd derivative.

| 10CITS2401 Computer Analysis & Visualisation

Cubic spline interpolation (2)

 Using numpy and scipy, interpolation is done in 2 steps:

 scipy.interpolate.splrep(x_pts, y_pts) – returns a tuple

representing the spline formulas needed

 scipy.interpolate.splev(x_vals, splines) ("spline evaluate")
– evaluate the spline data returned by splrep, and use it to estimate y

values.

| 11CITS2401 Computer Analysis & Visualisation

Cubic spline interpolation example

>>> import numpy as np

>>> from scipy import interpolate

>>> import matplotlib.pyplot as plt

>>> x_pts = np.linspace(0, 2*np.pi, 10)

10 equidistant x coords from 0 to 10

>>> y_pts = np.sin(x_pts)

>>> splines = interpolate.splrep(x_pts, y_pts)

>>> x_vals = np.linspace(0, 2*np.pi, 50)

50 desired points

>>> y_vals = interpolate.splev(x_vals, splines)

>>> plt.plot(x_pts, y_pts, 'o') # plot known data points

>>> plt.plot(x_vals, y_vals, '-x') # plot interpolated points

>>> plt.show()

| 12CITS2401 Computer Analysis & Visualisation

Cubic spline interpolation example (2)

| 13CITS2401 Computer Analysis & Visualisation

2D interpolation

 Just as we can do linear interpolation to estimate y values given x values –
i.e. estimating a one-variable function f(x) – we can also do linear
interpolation of a two-variable function f(x,y).

| 14CITS2401 Computer Analysis & Visualisation

2D interpolation – original data (1)

 We will generate some data, and demonstrate what the original data points
look like, and the interpolated version.

from mpl_toolkits.mplot3d import axes3d, Axes3D

import matplotlib.pyplot as plt

from matplotlib import cm

import numpy as np

from matplotlib.mlab import bivariate_normal

...

| 15CITS2401 Computer Analysis & Visualisation

2D interpolation – original data (2)

...

a function to plot the surface.

x, y and z should be arrays of data

def plot_data(x, y, z):

fig = plt.figure()

#ax = fig.gca(projection='3d')

ax = Axes3D(fig)

surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm,

linewidth=0, antialiased=False)

plt.show()

| 16CITS2401 Computer Analysis & Visualisation

2D interpolation – original data (3)

>>> x_pts = np.arange(-3, 3, 1)

>>> y_pts = np.arange(-3, 3, 1)

>>> xx, yy = np.meshgrid(x_pts, y_pts)

the plotting functions require the x and

y values in a grid format

>>> zz = np.sin(xx) + np.cos(yy)

>>> plot_data(xx,yy,zz)

| 17CITS2401 Computer Analysis & Visualisation

2D interpolation – original data (4)

| 18CITS2401 Computer Analysis & Visualisation

2D interpolation – linearly interpolated data

 Now we'll perform linear interpolation.

 interpolate.interp2d(x, y, z, kind='linear') returns a

function which, when called, returns the actual interpolated values.

>>> from scipy import interpolate

>>> f = interpolate.interp2d(x_pts, y_pts, zz, kind='linear')

"kind" specifies whether we're doing linear, cubic, etc.

>>> x_vals = np.arange(-3, 3, 0.1)

>>> y_vals = np.arange(-3, 3, 0.1)

>>> xx_v, yy_v = np.meshgrid(x_vals, y_vals)

>>> zz_v = f(x_vals, y_vals)

>>> plot_data(xx_v,yy_v,zz_v)

| 19CITS2401 Computer Analysis & Visualisation

2D interpolation – linearly interpolated data (2)

| 20CITS2401 Computer Analysis & Visualisation

2D interpolation – cubic interpolated data

 Now we'll perform cubic interpolation.

 interpolate.interp2d(x, y, z, kind='linear') returns a

function which, when called, returns the actual interpolated values.

>>> from scipy import interpolate

>>> f = interpolate.interp2d(x_pts, y_pts, zz, kind='cubic')

>>> x_vals = np.arange(-3, 3, 0.1)

>>> y_vals = np.arange(-3, 3, 0.1)

>>> xx_v, yy_v = np.meshgrid(x_vals, y_vals)

>>> zz_v = f(x_vals, y_vals)

>>> plot_data(xx_v,yy_v,zz_v)

| 21CITS2401 Computer Analysis & Visualisation

2D interpolation – cubic interpolated data (2)

| 22CITS2401 Computer Analysis & Visualisation

Curve fitting

 Collected data always contains some degree of error or imprecision

 Whereas interpolation is used when we assume that all data points are
accurate and we want to infer new intermediate data points –
curve fitting is used when we want to match an analytical (or symbolic) model
to a set of measurements which may contain some error.

| 23CITS2401 Computer Analysis & Visualisation

Curve fitting (2)

 For instance, we may have data
points which seem to represent
noisy data obtained from an
underlying linear relationship – how
can we estimate or model that
underlying relationship?

| 24CITS2401 Computer Analysis & Visualisation

Linear regression

 One method of curve fitting is linear regression – it minimizes the "square of
the errors" (where the "error" is the distance each point is from the line).

(In Excel, there is a function called "SLOPE" which performs linear regression
on a set of data points, similar to the Python functions we will see here.)

| 25CITS2401 Computer Analysis & Visualisation

Polynomial regression

 Linear regression is a special case of polynomial regression –

since a line (i.e., an equation of the form ax + b) is a simple polynomial.

 But your data may not reflect a linear relationship – a polynomial of a higher
order may be a better fit.

| 26CITS2401 Computer Analysis & Visualisation

Linear regression (2)

 Both linear and non-linear polynomial regression can be done with Numpy's
polyfit function:

numpy.polyfit(x, y, degree)

 It returns the coeffficients for the polynomial;

the easiest way to then use these in code is to use the numpy.poly1d class.

>>> import numpy as np

>>> from scipy.stats import linregress

>>> x_pts = np.arange(0,6,1)

>>> y_pts = np.array([15, 10, 9, 6, 2, 0])

>>> f = np.poly1d(np.polyfit(x_pts, y_pts, 1))

linear regression

>>> x_vals = np.linspace(0, 6, 100)

>>> plt.plot(x_pts, y_pts, '.')

>>> plt.plot(x_vals, f(x_vals), '-')

| 27CITS2401 Computer Analysis & Visualisation

Linear regression (3)

| 28CITS2401 Computer Analysis & Visualisation

Polynomial regression

 If we have 6 data points, then a fifth-order polynomial will be able to give a
perfect fit for them

(i.e., there is some fifth-order polynomial on which all the data points fall
exactly).

>>> import numpy as np

>>> from scipy.stats import linregress

>>> x_pts = np.arange(0,6,1)

>>> y_pts = np.array([15, 10, 9, 6, 2, 0])

>>> f = np.poly1d(np.polyfit(x_pts, y_pts, 5))

5th-order polynomial

>>> x_vals = np.linspace(0, 6, 100)

>>> plt.plot(x_pts, y_pts, '.')

>>> plt.plot(x_vals, f(x_vals), '-')

| 29CITS2401 Computer Analysis & Visualisation

Polynomial regression (2)

| 30CITS2401 Computer Analysis & Visualisation

Interpolation and curve fitting – part 2

| 31CITS2401 Computer Analysis & Visualisation

Overview

 Multiple variable regression

 Non-linear terms in regression

| 32CITS2401 Computer Analysis & Visualisation

Multiple variable data

 In our regression examples, we have used models where a single output
variable changes with respect to a single input variable.But real data may
have multiple input variables.

 For example, the top speed of a vehicle will depend on many variables such
as engine size, weight, air resistance etc.

| 33CITS2401 Computer Analysis & Visualisation

Predictor and response variables

 The input variables are called the

 independent variables, OR

 predictor variables, OR

 experimental variables

 The output variable is referred to as the

 dependent variable, OR

 response variable, OR

 outcome variable

| 34CITS2401 Computer Analysis & Visualisation

Predictor and response variables (2)

 We can use regression to find the relationship between input and output
variables.

 We will use the following for our data points:

import numpy as np

x_pts = np.arange(-5,5,0.5)

y_pts = np.arange(-5,5,0.5)

xx, yy = np.meshgrid(x_pts, y_pts)

our dependent variable is a linear function of

x and y, plus random noise.

zz = 3*xx - 0.5*yy - 5 + 8 * np.random.normal(size=xx.shape)

| 35CITS2401 Computer Analysis & Visualisation

Predictor and response variables (3)

 We build a model – i.e., we estimate the coefficients for x, y and intercept –
by expressing our data as a matrix equation, and getting Python to give us a
"least squares" solution for it.

 The lstsq function from Numpy will return a range of information about the
solution as a tuple – the coefficients we want are the first member of that
tuple:

numpy.linalg.lstsq(independent_vars, dependent_var)

 e.g.:

model_coefficients = numpy.linalg.lstsq(independent_vars,

dependent_var)[0]

| 36CITS2401 Computer Analysis & Visualisation

Predictor and response variables (4)

 Let's see what our input data looks like:

from mpl_toolkits.mplot3d import axes3d, Axes3D

import matplotlib.pyplot as plt

from numpy.linalg import lstsq

def plot_points(x, y, z):

fig = plt.figure()

ax = fig.gca(projection='3d')

surf = ax.plot_surface(x, y, z, cmap=plt.cm.coolwarm)

ax.view_init(20, -120)

plt.show()

plot_points(xx,yy,zz)

| 37CITS2401 Computer Analysis & Visualisation

Predictor and response variables (5)

| 38CITS2401 Computer Analysis & Visualisation

Predictor and response variables (6)

 To estimate the coefficients in our underlying relationship, we will ask Python
to solve a matrix equation of the form

where D is a matrix of representing our observations of independent
variables, c are the unknown coefficients we want to estimate, and z
represents our observations of the z values.

 So that Python will estimate values of the intercept – the "-5" in our
underlying relationship – we will need a column of ones in the D matrix.

 So the equation will look like:

| 39CITS2401 Computer Analysis & Visualisation

Predictor and response variables (7)

matrix for observations of independent variables

>>> ones = [[1] * len(xx.flatten())]

>>> indep = np.column_stack([xx.flatten(), yy.flatten()] + ones)

>>> model = lstsq(indep, zz.flatten())[0]

>>> model

array([3.27248794, -0.6004752 , -5.26689769])

 Compare the estimated coefficients with the actual ones (3, -0.5 and -5).

| 40CITS2401 Computer Analysis & Visualisation

Predictor and response variables (8)

 We can plot the least squares solution:

>>> x_vals = np.arange(-5,5,0.1)

>>> y_vals = np.arange(-5,5,0.1)

>>> xx_vals, yy_vals = np.meshgrid(x_vals, y_vals)

>>> zz_vals = model[0] * xx_vals + model[1] * yy_vals + model[2]

>>> fig = plt.figure()

>>> ax = fig.gca(projection='3d')

>>> ax.plot_surface(xx_vals, yy_vals, zz_vals, cmap=plt.cm.coolwarm)

the surface is our least-squares estimate

>>> ax.scatter(xx, yy, zz)

the scatter plot shows our original data points

>>> ax.view_init(20, -120)

>>> plt.show()

| 41CITS2401 Computer Analysis & Visualisation

Predictor and response variables (9)

| 42CITS2401 Computer Analysis & Visualisation

Curve-fitting using non-linear terms in linear regression

 What if we have a non-linear relationship between our variables?

 We can actually still use linear regression, as we did in the previous
example: but in our matrix of independent variables, we'll include terms
which are a non-linear function of our observations.

>>> xx_flat = xx.flatten()

>>> yy_flat = yy.flatten()

>>> zz_flat = zz.flatten()

>>> ones = [[1] * len(xx_flat)]

>>> indep = np.column_stack([xx_flat, yy_flat,

3 * np.sin(2 * xx_flat)] + ones)

the 3rd column is *3sin(2x)*

>>> model = lstsq(indep, zz.flatten())[0]

>>> model

array([2.88268949, -0.30450846, -0.02530611, -4.46351387])

| 43CITS2401 Computer Analysis & Visualisation

Curve-fitting using non-linear terms in linear regression (2)

 As with the linear case, we can use this model to estimate z-values.

>>> x_vals = np.arange(-5,5,0.1)

>>> y_vals = np.arange(-5,5,0.1)

>>> xx_vals, yy_vals = np.meshgrid(x_vals, y_vals)

>>> zz_vals = model[0] * xx_vals +

model[1] * yy_vals +

model[2] * 3 * np.sin(2 * xx_vals) +

model[3]

>>> fig = plt.figure()

>>> ax = fig.gca(projection='3d')

>>> ax.plot_surface(xx_vals, yy_vals, zz_vals, cmap=plt.cm.coolwarm)

the surface is our least-squares estimate

>>> ax.scatter(xx, yy, zz)

the scatter plot shows our original data points

>>> ax.view_init(20, -120)

>>> plt.show()

| 44CITS2401 Computer Analysis & Visualisation

Curve-fitting using non-linear terms in linear regression (3)

