%) THE UNIVERSITY OF
v, WESTERN AUSTRALIA

CITS2401
Computer Analysis and Visualization

School of Computer Science and Software Engineering

Lecture 9
Interpolation and curve 2 1‘\
. . -3:-;.;, ;,); Ly ;%#.,

CITS2401 Computer Analysis & Visualisation

=| THE UNIVERSITY OF

75 WESTERN AUSTRALIA

Summary

. Interpolation

« Curve fitting

. Linear regression (for single variables)
. Polynomial regression

« Multiple variable regression

« Non-linear terms in regression

CITS2401 Computer Analysis & Visualisation

%) THE UNIVERSITY OF

v WESTERN AUSTRALIA

Interpolation

« Suppose you have some known data points, and you wish to predict what
other data points might be — how can you do this?

o For example:

- Ifatt=1 second, distance traveled = 2m, and
-~ att=5seconds, distance traveled = 10m ...

- What would be the distance traveled at, say, t = 3 seconds?

CITS2401 Computer Analysis & Visualisation

%) THE UNIVERSITY OF

v WESTERN AUSTRALIA

Linear interpolation

« The simplest interpolation technique is linear interpolation:

it assumes that data follows a straight line between adjacent measurements.

CITS2401 Computer Analysis & Visualisation

~| THE UNIVERSITY OF

%, WESTERN AUSTRALIA

Linear interpolation (2)

. Assume the function
between two points is a
straight line

. Find equation of the line that
passes through the two
points

« Put a value of x in the
equation to find y

« Putavalue ofyinthe
equation to find x

y walues

12

10

A Data Plot

~ ~ T“How do you find a
point in between?

X=2,Y=?

2 3 4 5
¥ values

CITS2401 Computer Analysis & Visualisation

%) THE UNIVERSITY OF

v WESTERN AUSTRALIA

Linear interpolation in python

e numpy.interp(x, xp, Vp)-:

- xp and yp give the x and y coordinates of the data points we have

- x contains the x coordinates that we want interpolated y-values for.

CITS2401 Computer Analysis & Visualisation

=| THE UNIVERSITY OF

75 WESTERN AUSTRALIA

Linear interpolation in python — example

Linear interpolation of the sin() function:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x pts = np.linspace (0, 2*np.pi, 10)
10 equidistant x coords from 0 to 10
>>> y pts = np.sin(x pts)
>>> x vals = np.linspace (0, 2*np.pi, 50)
50 desired points
>>> vy vals = np.interp(x vals, X pts, y pts)
>>> plt.plot(x pts, y pts, 'o') # plot known data points
>>> plt.plot(x vals, y vals, '-x') # plot interpolated points
>>> plt.show ()

CITS2401 Computer Analysis & Visualisation

| THE UNIVERSITY OF

WESTERN AUSTRALIA

Linear interpolation in python — example (2)

1.00

[]

0.75 4

0.50

0.25 4

0.004 @ -

—-0.25 4

—0.50 1

=0.75 1

—1.00 A L

CITS2401 Computer Analysis & Visualisation

%) THE UNIVERSITY OF

v WESTERN AUSTRALIA

Cubic spline interpolation

. Just as a linear interpolation is made up of linear segments — a cubic spline

interpolation is made of segments of cubic polynomials, whose gradients
match up at the measured data points.

« These cubic polynomials are continuous up to their 2nd derivative.

CITS2401 Computer Analysis & Visualisation

h) THE UNIVERSITY OF
%, WESTERN AUSTRALIA

Cubic spline interpolation (2)

« Using numpy and scipy, interpolation is done in 2 steps:

- scipy.interpolate.splrep(x pts, y pts) —returns atuple
representing the spline formulas needed

- scipy.interpolate.splev(x vals, splines) ("spline evaluate")
— evaluate the spline data returned by splrep, and use it to estimate y

values.

CITS2401 Computer Analysis & Visualisation

~| THE UNIVERSITY OF

s WESTERN AUSTRALIA

Cubic spline interpolation example

>>> import numpy as np
>>> from scipy import interpolate
>>> import matplotlib.pyplot as plt
>>> x pts = np.linspace(0, Z2*np.pi, 10)
10 equidistant x coords from 0 to 10
>>> y pts = np.sin(x pts)
>>> splines = interpolate.splrep(x pts, y pts)
>>> x vals = np.linspace (0, Z*np.pi, 50)
50 desired points
>>> y vals = interpolate.splev(x vals, splines)
>>> plt.plot(x pts, y pts, 'o') # plot known data points
>>> plt.plot(x vals, y vals, '-x') # plot interpolated points
>>> plt.show/()

CITS2401 Computer Analysis & Visualisation

| THE UNIVERSITY OF

WESTERN AUSTRALIA

Cubic spline interpolation example (2)

1.00 A

LA

0.75 1

0.50 4

0.25 4

000 @ o

—0.25 ~

—=0.50 1

=0.75 1

@

—1.00 ~

CITS2401 Computer Analysis & Visualisation

=| THE UNIVERSITY OF

75 WESTERN AUSTRALIA

2D interpolation

. Just as we can do linear interpolation to estimate y values given x values —
l.e. estimating a one-variable function f(x) — we can also do linear
interpolation of a two-variable function f(x,y).

CITS2401 Computer Analysis & Visualisation | 13

%) THE UNIVERSITY OF

v WESTERN AUSTRALIA

2D interpolation — original data (1)

. We will generate some data, and demonstrate what the original data points
look like, and the interpolated version.

from mpl toolkits.mplot3d import axes3d, Axes3D
import matplotlib.pyplot as plt

from matplotlib import cm

import numpy as np

from matplotlib.mlab import bivariate normal

CITS2401 Computer Analysis & Visualisation | 14

%) THE UNIVERSITY OF

v WESTERN AUSTRALIA

2D interpolation — original data (2)

a function to plot the surface.
x, vy and z should be arrays of data
def plot data(x, y, z):
fig = plt.figure ()
#ax = fig.gca (projection="'3d")
ax = Axes3D(fig)
surf = ax.plot surface(x, y, z, cmap=cm.coolwarm,
linewidth=0, antialilased=False)

plt.show()

CITS2401 Computer Analysis & Visualisation | 15

%) THE UNIVERSITY OF

v WESTERN AUSTRALIA

2D interpolation — original data (3)

>>> x pts = np.arange(-3, 3, 1)

>>> y pts = np.arange (-3, 3, 1)

>>> xx, yy = np.meshgrid(x pts, y pts)
the plotting functions require the x and
v values 1in a grid format

>>> zzZ = np.sin(xx) + np.cos(yy)

>>> plot data (xx,vyy,zz)

CITS2401 Computer Analysis & Visualisation

=| THE UNIVERSITY OF

75 WESTERN AUSTRALIA

2D interpolation — original data (4)

CITS2401 Computer Analysis & Visualisation | 17

=| THE UNIVERSITY OF

75 WESTERN AUSTRALIA

2D interpolation — linearly interpolated data

Now we'll perform linear interpolation.

interpolate.interp2d(x, vy, 2z,
function which, when called, returns the actual interpolated values.

>>2>
>>>

>>>
>>2>
>>2>
>>>
>>>

from scipy import interpolate
f = interpolate.interp2d(x pts,

kind='"'linear') returns a

y pts, zz, kind='linear')

"kind" specifies whether we're doing linear, cubic, etc.

x vals = np.arange (-3, 3, 0.1)

y vals = np.arange (-3, 3, 0.1)
XX v, yy v = np.meshgrid(x vals,
zz v = f(x vals, y vals)

plot data(xx v,yy v,zz V)

y vals)

CITS2401 Computer Analysis & Visualisation

18

~| THE UNIVERSITY OF

s WESTERN AUSTRALIA

2D interpolation — linearly interpolated data (2)

CITS2401 Computer Analysis & Visualisation | 19

=| THE UNIVERSITY OF

75 WESTERN AUSTRALIA

2D interpolation — cubic interpolated data

« Now we'll perform cubic interpolation.

e Iinterpolate.interp2d(x, vy, z, kind='linear') returns a
function which, when called, returns the actual interpolated values.

>>> from scipy import interpolate

>>> f = interpolate.interp2d(x pts, y pts, zz, kind='cubic'")
>>> x vals = np.arange (-3, 3, 0.1)

>>> 'y vals = np.arange (-3, 3, 0.1)

>>> xx v, yy v = np.meshgrid(x vals, y vals)

>>> zz v = f(x vals, y vals)

>>> plot data(xx v,yy Vv,zz V)

CITS2401 Computer Analysis & Visualisation

~| THE UNIVERSITY OF

75 WESTERN AUSTRALIA

2D interpolation — cubic interpolated data (2)

CITS2401 Computer Analysis & Visualisation

= THE UNIVERSITY OF

75 WESTERN AUSTRALIA

Curve fitting

. Collected data always contains some degree of error or imprecision

« Whereas interpolation is used when we assume that all data points are
accurate and we want to infer new intermediate data points —
curve fitting is used when we want to match an analytical (or symbolic) model
to a set of measurements which may contain some error.

CITS2401 Computer Analysis & Visualisation

=| THE UNIVERSITY OF

75 WESTERN AUSTRALIA

Curve fitting (2)

[]
. For instance, we may have data 1
points which seem to represent 12 -
noisy data obtained from an - .
underlying linear relationship — how .
can we estimate or model that 81
underlying relationship? 6 .
2l
2 L
04 L]

CITS2401 Computer Analysis & Visualisation | 23

%) THE UNIVERSITY OF

v WESTERN AUSTRALIA

Linear regression

« One method of curve fitting is linear regression — it minimizes the "square of
the errors" (where the "error" is the distance each point is from the line).

(In Excel, there is a function called "SLOPE" which performs linear regression
on a set of data points, similar to the Python functions we will see here.)

CITS2401 Computer Analysis & Visualisation | 24

| THE UNIVERSITY OF

v WESTERN AUSTRALIA

Polynomial regression

. Linear regression is a special case of polynomial regression —

since a line (i.e., an equation of the form ax + b) is a simple polynomial.

. But your data may not reflect a linear relationship — a polynomial of a higher
order may be a better fit.

CITS2401 Computer Analysis & Visualisation | 25

~| THE UNIVERSITY OF

%3 WESTERN AUSTRALIA

Linear regression (2)

« Both linear and non-linear polynomial regression can be done with Numpy's
polyfit function:

numpy.polyfit(x, y, degree)
. It returns the coeffficients for the polynomial;

the easiest way to then use these in code is to use the numpy.polyld class.

>>> import numpy as np

>>> from scipy.stats import linregress

>>> x pts = np.arange(0,6,1)

>>> y pts = np.array([1l5, 10, 9, o, 2, 0])

>>> f = np.polyld(np.polyfit(x pts, y pts, 1))
linear regression

>>> x vals = np.linspace (0, 6, 100)

>>> plt.plot(x pts, y pts, ".")

>>> plt.plot(x vals, f(x vals), '-")

CITS2401 Computer Analysis & Visualisation

| THE UNIVERSITY OF

WESTERN AUSTRALIA

Linear regression (3)

15.04 =

12.5 A

10.0 + .

7.5

5.0

2.5 7

0.0~ s

=2.5 4

CITS2401 Computer Analysis & Visualisation

= THE UNIVERSITY OF

75 WESTERN AUSTRALIA

Polynomial regression

. If we have 6 data points, then a fifth-order polynomial will be able to give a
perfect fit for them

(i.e., there is some fifth-order polynomial on which all the data points fall
exactly).

>>> import numpy as np

>>> from scipy.stats import linregress

>>> x pts = np.arange (0,06, 1)

>>> 'y pts = np.array([1l5, 10, 9, 6, 2, 0])

>>> f = np.polyld(np.polyfit(x pts, y pts, 5))
S5th-order polynomial

>>> x vals = np.linspace (0, 6, 100)

>>> plt.plot(x pts, y pts, ".")

>>> plt.plot(x vals, f(x vals), '-")

CITS2401 Computer Analysis & Visualisation

| THE UNIVERSITY OF

WESTERN AUSTRALIA

Polynomial regression (2)

14 -

12 1

10 - .

CITS2401 Computer Analysis & Visualisation

%) THE UNIVERSITY OF

v WESTERN AUSTRALIA

Interpolation and curve fitting — part 2

CITS2401 Computer Analysis & Visualisation

~| THE UNIVERSITY OF

s WESTERN AUSTRALIA

Overview

« Multiple variable regression

« Non-linear terms in regression

CITS2401 Computer Analysis & Visualisation | 31

= THE UNIVERSITY OF

75 WESTERN AUSTRALIA

Multiple variable data

. In our regression examples, we have used models where a single output
variable changes with respect to a single input variable.But real data may
have multiple input variables.

. For example, the top speed of a vehicle will depend on many variables such
as engine size, weight, air resistance etc.

CITS2401 Computer Analysis & Visualisation

%) THE UNIVERSITY OF

v WESTERN AUSTRALIA

Predictor and response variables

« The input variables are called the

- independent variables, OR
- predictor variables, OR
- experimental variables

« The output variable is referred to as the

- dependent variable, OR

- response variable, OR

— outcome variable

CITS2401 Computer Analysis & Visualisation | 33

= THE UNIVERSITY OF

75 WESTERN AUSTRALIA

Predictor and response variables (2)

« We can use regression to find the relationship between input and output
variables.

« We will use the following for our data points:

import numpy as np

X pts = np.arange(-5,5,0.5)

y pts = np.arange(-5,5,0.5)

xx, yy = np.meshgrid(x pts, y pts)

our dependent variable 1is a linear function of
x and y, plus random noise.

zz = 3*xx - 0.5*yy - 5 + 8 * np.random.normal (size=xx.shape)

CITS2401 Computer Analysis & Visualisation | 34

%) THE UNIVERSITY OF

v WESTERN AUSTRALIA

Predictor and response variables (3)

We build a model — i.e., we estimate the coefficients for x, y and intercept —
by expressing our data as a matrix equation, and getting Python to give us a
"least squares" solution for it.

The 1stsqg function from Numpy will return a range of information about the

solution as a tuple — the coefficients we want are the first member of that
tuple:

numpy.linalg.lstsqg(independent vars, dependent var)

e.g.:

model coefficients = numpy.linalg.lstsg(independent vars,
dependent var) [0]

CITS2401 Computer Analysis & Visualisation | 35

h) THE UNIVERSITY OF
%, WESTERN AUSTRALIA

Predictor and response variables (4)

. Let's see what our input data looks like:

from mpl toolkits.mplot3d import axes3d, Axes3D
import matplotlib.pyplot as plt
from numpy.linalg import lstsqg

def plot points(x, y, 2z):
fig = plt.figure ()

ax = fig.gca(projection="'3d")

surf = ax.plot surface(x, y, z, cmap=plt.cm.coolwarm)
ax.view 1init (20, -120)

plt.show()

plot points (xx,yy,zz)

CITS2401 Computer Analysis & Visualisation

~| THE UNIVERSITY OF

2, WESTERN AUSTRALIA

Predictor and response variables (5)

CITS2401 Computer Analysis & Visualisation | 37

%) THE UNIVERSITY OF

v WESTERN AUSTRALIA

Predictor and response variables (6)

To estimate the coefficients in our underlying relationship, we will ask Python
to solve a matrix equation of the form

Dc =12z

where D is a matrix of representing our observations of independent
variables, c are the unknown coefficients we want to estimate, and z
represents our observations of the z values.

So that Python will estimate values of the intercept — the "-5" in our
underlying relationship — we will need a column of ones in the D matrix.

So the equation will look like:

r1 Y1 1| |a 21
o Y2 1| |co 29
3 ys 1| |c3 23

CITS2401 Computer Analysis & Visualisation

=| THE UNIVERSITY OF
Y, WESTERN AUSTRALIA

Predictor and response variables (7)

matrix for observations of independent variables

>>> ones = [[1] * len(xx.flatten ())]
>>> indep = np.column stack([xx.flatten(), yy.flatten()] + ones)
>>> model = lstsqg(indep, zz.flatten()) [0]

>>> model
array ([3.27248794, -0.6004752 , -5.26689769])

Compare the estimated coefficients with the actual ones (3, -0.5 and -5).

39

CITS2401 Computer Analysis & Visualisation |

= THE UNIVERSITY OF

WESTERN AUSTRALIA

Predictor and response variables (8)

« We can plot the least squares solution:

>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>

>>>
>>>

x vals = np.arange(-5,5,0.1)

y vals = np.arange(-5,5,0.1)

xx vals, yy vals = np.meshgrid(x vals, y vals)

zz vals = model[0] * xx vals + model[l] * yy vals + model[Z2]

fig = plt.figure ()

ax = fig.gca(projection="'3d")

ax.plot surface(xx vals, yy vals, zz vals, cmap=plt.cm.coolwarm)

the surface 1is our least-squares estimate
ax.scatter(xx, yy, zz)

the scatter plot shows our original data points
ax.view init (20, -120)

plt.show ()

CITS2401 Computer Analysis & Visualisation | 40

~| THE UNIVERSITY OF
v WESTERN AUSTRALIA

CITS2401 Computer Analysis & Visualisation

=| THE UNIVERSITY OF

75 WESTERN AUSTRALIA

Curve-fitting using non-linear terms in linear regression

« What if we have a non-linear relationship between our variables?

« We can actually still use linear regression, as we did in the previous
example: but in our matrix of independent variables, we'll include terms
which are a non-linear function of our observations.

>>> xx flat = xx.flatten()
>>> yy flat = yy.flatten()
>>> zz flat = zz.flatten ()

>>> ones = [[1] * len(xx flat)]
>>> indep = np.column stack([xx flat, yy flat,
3 * np.sin(2 * xx flat)] + ones)
the 3rd column 1s *3sin(2x) *
>>> model = lstsqg(indep, zz.flatten()) [0]

>>> model
array ([2.88268949, -0.30450846, -0.02530611, -4.463513871])

CITS2401 Computer Analysis & Visualisation | 42

= THE UNIVERSITY OF

WESTERN AUSTRALIA

Curve-fitting using non-linear terms in linear regression (2)
. As with the linear case, we can use this model to estimate z-values.

>>> x vals = np.arange(-5,5,0.1)
>>> 'y vals = np.arange(-5,5,0.1)
>>> xx vals, yy vals np.meshgrid(x vals, y vals)

>>> zz vals = model[0] * xx vals +
model [1] * yy vals +
model [2] * 3 * np.sin(Z2 * xx vals) +
model [3]

>>> fig = plt.figure()

>>> ax = fig.gca(projection='3d")

>>> ax.plot surface(xx vals, yy vals, zz vals, cmap=plt.cm.coolwarm)
the surface is our least-squares estimate

>>> ax.scatter (xx, yy, zz)
the scatter plot shows our original data points

>>> ax.view 1nit (20, -120)

>>> plt.show()

CITS2401 Computer Analysis & Visualisation | 43

%) THE UNIVERSITY OF
v, WESTERN AUSTRALIA

CITS2401 Computer Analysis & Visualisation | 44

