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Interpolation

 Suppose you have some known data points, and you wish to predict what 
other data points might be – how can you do this?

 For example:

 If at t = 1 second, distance traveled = 2m, and

 at t = 5 seconds, distance traveled = 10m ...

 What would be the distance traveled at, say, t = 3 seconds?
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Linear interpolation

 The simplest interpolation technique is linear interpolation:

it assumes that data follows a straight line between adjacent measurements.
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Linear interpolation (2)

 Assume the function 
between two points is a 
straight line

 Find equation of the line that 
passes through the two 
points

 Put a value of x in the 
equation to find y

 Put a value of y in the 
equation to find x

How do you find a 
point in between?

X=2, Y=?
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Linear interpolation in python

 numpy.interp(x, xp, yp):

 xp and yp give the x and y coordinates of the data points we have

 x contains the x coordinates that we want interpolated y-values for.
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Linear interpolation in python – example

Linear interpolation of the sin() function:

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> x_pts = np.linspace(0, 2*np.pi, 10)  

# 10 equidistant x coords from 0 to 10

>>> y_pts = np.sin(x_pts)

>>> x_vals = np.linspace(0, 2*np.pi, 50) 

# 50 desired points

>>> y_vals = np.interp(x_vals, x_pts, y_pts)

>>> plt.plot(x_pts, y_pts, 'o') # plot known data points

>>> plt.plot(x_vals, y_vals, '-x') # plot interpolated points

>>> plt.show() 
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Linear interpolation in python – example (2)
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Cubic spline interpolation

 Just as a linear interpolation is made up of linear segments – a cubic spline 
interpolation is made of segments of cubic polynomials, whose gradients 
match up at the measured data points.

 These cubic polynomials are continuous up to their 2nd derivative.
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Cubic spline interpolation (2)

 Using numpy and scipy, interpolation is done in 2 steps:

 scipy.interpolate.splrep(x_pts, y_pts) – returns a tuple 

representing the spline formulas needed

 scipy.interpolate.splev(x_vals, splines) ("spline evaluate") 
– evaluate the spline data returned by splrep, and use it to estimate y 

values.
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Cubic spline interpolation example

>>> import numpy as np

>>> from scipy import interpolate

>>> import matplotlib.pyplot as plt

>>> x_pts = np.linspace(0, 2*np.pi, 10)  

# 10 equidistant x coords from 0 to 10

>>> y_pts = np.sin(x_pts)

>>> splines = interpolate.splrep(x_pts, y_pts)

>>> x_vals = np.linspace(0, 2*np.pi, 50) 

# 50 desired points

>>> y_vals = interpolate.splev(x_vals, splines)

>>> plt.plot(x_pts, y_pts, 'o') # plot known data points

>>> plt.plot(x_vals, y_vals, '-x') # plot interpolated points

>>> plt.show() 
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Cubic spline interpolation example (2)
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2D interpolation

 Just as we can do linear interpolation to estimate y values given x values –
i.e. estimating a one-variable function f(x) – we can also do linear 
interpolation of a two-variable function f(x,y).
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2D interpolation – original data (1)

 We will generate some data, and demonstrate what the original data points 
look like, and the interpolated version.

from mpl_toolkits.mplot3d import axes3d, Axes3D

import matplotlib.pyplot as plt

from matplotlib import cm

import numpy as np

from matplotlib.mlab import bivariate_normal

...
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2D interpolation – original data (2)

...

# a function to plot the surface.

# x, y and z should be arrays of data

def plot_data(x, y, z):

fig = plt.figure()

#ax = fig.gca(projection='3d')

ax = Axes3D(fig)

surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm,

linewidth=0, antialiased=False)

plt.show() 
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2D interpolation – original data (3)

>>> x_pts = np.arange(-3, 3, 1) 

>>> y_pts = np.arange(-3, 3, 1) 

>>> xx, yy = np.meshgrid(x_pts, y_pts)

# the plotting functions require the x and 

# y values in a grid format

>>> zz = np.sin(xx) + np.cos(yy)     

>>> plot_data(xx,yy,zz) 
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2D interpolation – original data (4)
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2D interpolation – linearly interpolated data 

 Now we'll perform linear interpolation.

 interpolate.interp2d(x, y, z, kind='linear') returns a 

function which, when called, returns the actual interpolated values.

>>> from scipy import interpolate

>>> f = interpolate.interp2d(x_pts, y_pts, zz, kind='linear')

# "kind" specifies whether we're doing linear, cubic, etc.

>>> x_vals = np.arange(-3, 3, 0.1) 

>>> y_vals = np.arange(-3, 3, 0.1)

>>> xx_v, yy_v = np.meshgrid(x_vals, y_vals)  

>>> zz_v = f(x_vals, y_vals)

>>> plot_data(xx_v,yy_v,zz_v) 
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2D interpolation – linearly interpolated data (2)
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2D interpolation – cubic interpolated data 

 Now we'll perform cubic interpolation.

 interpolate.interp2d(x, y, z, kind='linear') returns a 

function which, when called, returns the actual interpolated values.

>>> from scipy import interpolate

>>> f = interpolate.interp2d(x_pts, y_pts, zz, kind='cubic')

>>> x_vals = np.arange(-3, 3, 0.1) 

>>> y_vals = np.arange(-3, 3, 0.1)

>>> xx_v, yy_v = np.meshgrid(x_vals, y_vals)  

>>> zz_v = f(x_vals, y_vals)

>>> plot_data(xx_v,yy_v,zz_v) 
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2D interpolation – cubic interpolated data (2)
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Curve fitting

 Collected data always contains some degree of error or imprecision

 Whereas interpolation is used when we assume that all data points are 
accurate and we want to infer new intermediate data points –
curve fitting is used when we want to match an analytical (or symbolic) model 
to a set of measurements which may contain some error.
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Curve fitting (2)

 For instance, we may have data 
points which seem to represent 
noisy data obtained from an 
underlying linear relationship – how 
can we estimate or model that 
underlying relationship?
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Linear regression

 One method of curve fitting is linear regression – it minimizes the "square of 
the errors" (where the "error" is the distance each point is from the line).

(In Excel, there is a function called "SLOPE" which performs linear regression 
on a set of data points, similar to the Python functions we will see here.)
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Polynomial regression

 Linear regression is a special case of polynomial regression –

since a line (i.e., an equation of the form ax + b) is a simple polynomial.

 But your data may not reflect a linear relationship – a polynomial of a higher 
order may be a better fit.
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Linear regression (2)

 Both linear and non-linear polynomial regression can be done with Numpy's 
polyfit function:

numpy.polyfit(x, y, degree) 

 It returns the coeffficients for the polynomial;

the easiest way to then use these in code is to use the numpy.poly1d class.

>>> import numpy as np

>>> from scipy.stats import linregress  

>>> x_pts = np.arange(0,6,1)

>>> y_pts = np.array([15, 10, 9, 6, 2, 0])

>>> f = np.poly1d( np.polyfit(x_pts, y_pts, 1))

# linear regression

>>> x_vals = np.linspace(0, 6, 100)

>>> plt.plot(x_pts, y_pts, '.')         

>>> plt.plot(x_vals, f(x_vals), '-') 
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Linear regression (3)
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Polynomial regression 

 If we have 6 data points, then a fifth-order polynomial will be able to give a 
perfect fit for them

(i.e., there is some fifth-order polynomial on which all the data points fall 
exactly).

>>> import numpy as np

>>> from scipy.stats import linregress

>>> x_pts = np.arange(0,6,1)

>>> y_pts = np.array([15, 10, 9, 6, 2, 0])

>>> f = np.poly1d( np.polyfit(x_pts, y_pts, 5))

# 5th-order polynomial

>>> x_vals = np.linspace(0, 6, 100)

>>> plt.plot(x_pts, y_pts, '.')         

>>> plt.plot(x_vals, f(x_vals), '-') 
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Polynomial regression (2)
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Interpolation and curve fitting – part 2
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Overview

 Multiple variable regression

 Non-linear terms in regression
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Multiple variable data

 In our regression examples, we have used models where a single output 
variable changes with respect to a single input variable.But real data may 
have multiple input variables.

 For example, the top speed of a vehicle will depend on many variables such 
as engine size, weight, air resistance etc.



|      33CITS2401 Computer Analysis & Visualisation

Predictor and response variables

 The input variables are called the

 independent variables, OR

 predictor variables, OR

 experimental variables

 The output variable is referred to as the

 dependent variable, OR

 response variable, OR

 outcome variable
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Predictor and response variables (2)

 We can use regression to find the relationship between input and output 
variables.

 We will use the following for our data points:

import numpy as np

x_pts = np.arange(-5,5,0.5)    

y_pts = np.arange(-5,5,0.5)     

xx, yy = np.meshgrid(x_pts, y_pts) 

# our dependent variable is a linear function of

# x and y, plus random noise.

zz = 3*xx - 0.5*yy - 5 + 8 * np.random.normal(size=xx.shape) 
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Predictor and response variables (3)

 We build a model – i.e., we estimate the coefficients for x, y and intercept –
by expressing our data as a matrix equation, and getting Python to give us a 
"least squares" solution for it.

 The lstsq function from Numpy will return a range of information about the 
solution as a tuple – the coefficients we want are the first member of that 
tuple:

numpy.linalg.lstsq(independent_vars, dependent_var)

 e.g.:

model_coefficients = numpy.linalg.lstsq(independent_vars, 

dependent_var)[0]
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Predictor and response variables (4)

 Let's see what our input data looks like:

from mpl_toolkits.mplot3d import axes3d, Axes3D

import matplotlib.pyplot as plt

from numpy.linalg import lstsq

def plot_points(x, y, z):

fig = plt.figure()

ax = fig.gca(projection='3d')

surf = ax.plot_surface(x, y, z, cmap=plt.cm.coolwarm)

ax.view_init(20, -120)

plt.show()

plot_points(xx,yy,zz) 
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Predictor and response variables (5)
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Predictor and response variables (6)

 To estimate the coefficients in our underlying relationship, we will ask Python 
to solve a matrix equation of the form

where D is a matrix of representing our observations of independent 
variables, c are the unknown coefficients we want to estimate, and z
represents our observations of the z values.

 So that Python will estimate values of the intercept – the "-5" in our 
underlying relationship – we will need a column of ones in the D matrix.

 So the equation will look like:
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Predictor and response variables (7)

# matrix for observations of independent variables

>>> ones = [ [1] * len( xx.flatten() )]

>>> indep = np.column_stack( [xx.flatten(), yy.flatten()] + ones )

>>> model = lstsq(indep, zz.flatten())[0] 

>>> model

array([ 3.27248794, -0.6004752 , -5.26689769]) 

 Compare the estimated coefficients with the actual ones (3, -0.5 and -5). 
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Predictor and response variables (8)

 We can plot the least squares solution:

>>> x_vals = np.arange(-5,5,0.1)

>>> y_vals = np.arange(-5,5,0.1)

>>> xx_vals, yy_vals = np.meshgrid(x_vals, y_vals)

>>> zz_vals = model[0] * xx_vals + model[1] * yy_vals + model[2]  

>>> fig = plt.figure()

>>> ax = fig.gca(projection='3d')

>>> ax.plot_surface(xx_vals, yy_vals, zz_vals, cmap=plt.cm.coolwarm)

# the surface is our least-squares estimate

>>> ax.scatter( xx, yy, zz)

# the scatter plot shows our original data points

>>> ax.view_init(20, -120)

>>> plt.show() 
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Predictor and response variables (9)
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Curve-fitting using non-linear terms in linear regression

 What if we have a non-linear relationship between our variables?

 We can actually still use linear regression, as we did in the previous 
example: but in our matrix of independent variables, we'll include terms 
which are a non-linear function of our observations.

>>> xx_flat = xx.flatten()

>>> yy_flat = yy.flatten()

>>> zz_flat = zz.flatten()

>>> ones = [ [1] * len( xx_flat )]

>>> indep = np.column_stack( [xx_flat, yy_flat,

3 * np.sin(2 * xx_flat) ] + ones )

# the 3rd column is *3sin(2x)*

>>> model = lstsq(indep, zz.flatten())[0] 

>>> model

array([ 2.88268949, -0.30450846, -0.02530611, -4.46351387]) 
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Curve-fitting using non-linear terms in linear regression (2)

 As with the linear case, we can use this model to estimate z-values.

>>> x_vals = np.arange(-5,5,0.1)

>>> y_vals = np.arange(-5,5,0.1)

>>> xx_vals, yy_vals = np.meshgrid(x_vals, y_vals)

>>> zz_vals = model[0] * xx_vals +

model[1] * yy_vals +

model[2] * 3 * np.sin(2 * xx_vals) +

model[3]  

>>> fig = plt.figure()

>>> ax = fig.gca(projection='3d')

>>> ax.plot_surface(xx_vals, yy_vals, zz_vals, cmap=plt.cm.coolwarm)

# the surface is our least-squares estimate

>>> ax.scatter( xx, yy, zz)

# the scatter plot shows our original data points

>>> ax.view_init(20, -120)

>>> plt.show() 
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Curve-fitting using non-linear terms in linear regression (3)


