
CITS5502 – Capability maturity

Unit coordinator: Arran Stewart

1 / 52

Sources

Pressman 9th ed, Ch 26

2 / 52

Why try to improve processes?

In competitive markets, there is pressure to deliver software
faster and cheaper, which meets customer needs
Organisations may look to process improvement to improve
software quality, reduce costs, or speed up their processes
It’s clear that the processes used to develop software do have a
bearing on the quality of the software produced; therefore
people reason that improving the processes can improve the
software.

3 / 52

Major approaches to Software Process Improvement (SPI)

Process maturity models
Focuses on project management, introducing good software
engineering practice
Defines levels of process maturity
These reflect the extent to which good practices have been
adopted into processes
Primary goals: improved product quality and process
predictability.

Agile
Focuses on iterative development and reduction of overheads
Goals include rapid delivery of functionality and responsiveness
to changing customer requirements.

4 / 52

CMM

We’ll look at one maturity model–based approach, the CMM
(Capability Maturity Model), and its successor, CMMI
(Capability Maturity Model Integration)

5 / 52

CMM background – statistical quality control

US engineer W.E. Deming worked with Japanese
manufacturing industries after WWII to help improve quality.

The idea of statistical quality control is due to Deming and
others:

“reduce product defects by analyzing and modifying the process
so that the chances of introducting defects are reduced and
defect detection is improved”
Once defects have been reduced, standardise the process and
start again

6 / 52

Watts Humphrey and SEI

Watts Humphrey – Pioneer of the work on CMM
Humphrey stated that Deming’s concepts of statistical quality
control “are just as applicable to software as they are to
automobiles, cameras, wristwatches and steel”.1

1980s at Software Engineering Institute (SEI) at Carnegie
Mellon University: Humphreys founded the Software Process
Program, aimed at understanding and managing the Software
Process.
Software Process Program gave rise to CMM2 .

1Humphrey, W. (1989). Managing the Software Process. Reading, Mass.:
Addison-Wesley.

2CMM: Described in Humphrey (1989) and later (mid 90s) papers led by
Mark Paulk

7 / 52

Watts Humphrey and SEI

Watts Humphrey – Pioneer of the work on CMM
Humphrey stated that Deming’s concepts of statistical quality
control “are just as applicable to software as they are to
automobiles, cameras, wristwatches and steel”.1
1980s at Software Engineering Institute (SEI) at Carnegie
Mellon University: Humphreys founded the Software Process
Program, aimed at understanding and managing the Software
Process.
Software Process Program gave rise to CMM2 .

1Humphrey, W. (1989). Managing the Software Process. Reading, Mass.:
Addison-Wesley.

2CMM: Described in Humphrey (1989) and later (mid 90s) papers led by
Mark Paulk

8 / 52

CMM

CMM: a development model created from a study of data
collected from organizations that contracted with the U.S.
Department of Defence (who funded the research)
The intent of the capability maturity model is to provide an
overall indication of the “process maturity” exhibited by a
software organization.
This is accomplished using some type of ordinal scale.

CMM is described as
“. . . sets of recommended practices in a number of key
process areas that have been shown to enhance software
process capability.”3

3Paulk et al (2002–), “The Capability Maturity Model for Software” in Wiley
Encyclopedia of Software Engineering.
https://doi.org/10.1002/0471028959.sof589

9 / 52

https://doi.org/10.1002/0471028959.sof589

Typical assumptions in applying statistical quality control

The development and maintenance process can be defined
Significant aspects of that process can be measured
When measured, the variation in the data will not be
unreasonably large
Given the signal-to-noise ratio is acceptable, then the
conditions hold from project to project is predictable

Given a repeatable process, the outcomes may be optimized with
respect to some organizational objective function

10 / 52

Concepts in CMM

Immature vs mature organizations4

Immature:

Software processes are generally improvised
during the course of a project.
Managers are reactionary, solving immediate
crises.
Functionality and quality are compromised when
hard deadlines approach.
No objective basis for judging product quality;
thus quality is difficult to predict.

4Paulk et al (1993), Capability Maturity Model for Software, Version 1.1
11 / 52

Concepts in CMM

Immature vs mature organizations5

Mature:

The software process is accurately communicated
to existing and new staff.
Work activities are actually carried out according
to the planned process.
The mandated processes are usable and
consistent with the way work actually gets done.
Roles and responsibilities are clear, schedules and
budgets are based on historical performance.

5Paulk et al (1993), Capability Maturity Model for Software, Version 1.1
12 / 52

Concepts in CMM, cont’d

Software process methods, activities, practices used to develop and
maintain software

Software process capability the range of expected results achieved
by following a software process.

Software process performance the actual results achieved by
following a software process.

13 / 52

Concepts in CMM, cont’d

Software process maturity the extent to which a specific process is
explicitly defined, managed, measured, controlled, and
effective.

As an organization gains in process maturity, it institutionalizes its
process by policies, standards and organizational structures.

14 / 52

CMM – levels of maturity

Identify an evolutionary path from immature to mature.
Identify a number of well-defined plateaus along the way.

Each plateau (level) is a set of process goals which, when
satisfied, stabilize some component of the software process.

Process goals are prioritized, so organizations understand what
to do next.

15 / 52

CMM – levels of maturity

CMM suggests 5 levels of maturity:

Initial
Repeatable
Defined
Managed
Optimizing

16 / 52

CMM – levels of maturity

17 / 52

Initial

Level 1, Initial

Few processes are defined; success depends more on individual
heroic efforts than on following a process and using a synergistic
team effort.

Unstable environment
Commitments made that can’t be met
Plans are scrapped during crises, jumping to coding and testing.
Can success happen? Yes, but only through heroic efforts.

18 / 52

Initial, cont’d

Such efforts will not likely be repeatable
Capability is a characteristic of individuals, not the
organization.

Would you work for or with such an organization? Have you?

19 / 52

Repeatable

Level 2, Repeatable

Basic project management processes are established to track cost,
schedule, and functionality. Planning and managing new products is
based on experience with similar projects.

Management policies are in place.
Planning and managing are based on experience.
Policies are enhanced on a project by project basis.
Commitments are realistic.

20 / 52

Repeatable, cont’d

Managers track software costs, schedules, functionality.
Project standards are defined and followed.
Planning and tracking are stable.
Earlier successes can be repeated.

21 / 52

Defined

Level 3, Defined

Processes for management and engineering are documented,
standardized, and integrated into a standard software process for the
organization.

A standard process for software engineering and management
across the organization is documented.
There is a group responsible for this standard software process.
There are organization-wide training programs.

22 / 52

Defined, cont’d

Projects tailor the standard process to account for their unique
features.
Such a tailored process contains readiness criteria, inputs,
verification mechanisms, outputs and completion criteria.
This process capability is based on a common,
organization-wide understanding of activities, roles and
responsibilities.

23 / 52

Managed

Level 4, Managed

Detailed software process and product quality metrics establish the
quantitative evaluation foundation. Meaningful variations in process
performance can be distinguished from random noise, and trends in
process and product qualities can be predicted.

The organization sets quantitative quality goals for software
products and processes
A process database is used to collect and analyze data from
projects’ processes.
Variation in process performance is narrowed to acceptable
levels.
Software processes are instrumented.

24 / 52

Managed, cont’d

Risks in new product development are well understood.
The process capability is quantifiable and predictable.
Software products are of predictably high quality.

25 / 52

Optimizing

Level 5, Optimizing

The organization has quantitative feedback system in place to
identify process weaknesses and strengthen them pro-actively.
Project teams analyze defects to determine their causes; software
processes are evaluated and updated to prevent known types of
defects from recurring.

The entire organization is focused on continuous process
improvement.
Weaknesses can be identified and remedies found.
Data on software process allows cost-benefit analyses on new
technologies.

26 / 52

Visibility

Typically in an organization, software engineers have detailed
insight into the state of a project they are working on – though
in large projects, typically only in their area of responsibility
Senior management, on the other hand, do not have such
detailed insight – they rely on periodic reviews in order to
monitor progress.
In CMM, a consequence of achieving the maturity levels is that
managers are better informed, and have greater abbility to
control the process

27 / 52

Visibility – level 1, initial

The project is a black box
Requirements flow into the project haphazardly
The staging of activities is hidden
Managers can’t establish project status

28 / 52

Visibility – level 2, repeatable

Requirements are controlled
Visibility at defined occasions
The project is a sequence of black boxes
Management reacts to problems as they occur

29 / 52

Visibility – level 3, defined

Tasks inside each black box are known
Management and engineers understand their “roles and
responsibilities” within each box
Management is proactive in dealing with problems, because of
rapid status updates

30 / 52

Visibility – level 4, managed

Processes are “instrumented” (details of estimates and
outcomes are recorded)
Decisions are based on hard facts
Outcomes can be predicted more accurately
Variability in outcomes gets smaller

31 / 52

Visibility – level 5, optimizing

Improved methods of software development are regularly tried
Defect-prone activities are replaced
Managers can predict the impact of process changes

32 / 52

Specific recommendations

So what actual, concrete recommendations does the CMM make?

“Each maturity level has been decomposed into constituent
parts. . . . [T]he decomposition of each maturity level
ranges from abstract summaries of each level down to
their operational definition in the key practices. . . . Each
maturity level is composed of several key process areas.
Each key process area is organized into five sections called
common features. The common features specify the key
practices that, when collectively addressed, accomplish the
goals of the key process area.”6

6Paulk et al (1993), Capability Maturity Model for Software, Version 1.1
33 / 52

Specific recommendations

34 / 52

Key process areas – example, level 2

Key Process Areas: Level 2
Requirements management
Software project planning
Software project tracking and oversight
Software subcontract management
Software quality assurance
Software configuration management

35 / 52

Key practice – example, level 2

36 / 52

Prediction of Performance

Three improvements are expected as the software process matures:

The difference between targeted results and actual results
decreases.
The variability of actual results around targeted results
decreases.
Targeted results improve as maturity increases.

37 / 52

Implications of CMM

Can’t skip levels (cultural changes are required)
Can take a long time to go from one level to the next

38 / 52

Comments on CMM

Doesn’t account for small, innovative firms
Small organizations probably cannot afford the overhead
required by CMM.

39 / 52

Alternative maturity models

Other organizations have also developed comparable process
maturity models:

The SPICE approach to capability assessment and process
improvement
The Bootstrap project, which uses the SEI’s maturity levels,
includes guidelines for developing a company-wide quality
system to support process improvement.
PSP and TSP – individual and team-specific SPI framework
that focus on process in-the-small.
TickIT – an auditing method that assesses an organization’s
compliance to ISO Standard 9001:2000.

40 / 52

Successor – CMMI

The original CMM was developed and upgraded by the SEI
throughout the 1990s as a complete SPI framework.
Today it has evolved into the Capability Maturity Model
Integration (CMMI), a comprehensive process metamodel
The CMMI model is very complex, with more than 1,000 pages
of description.

41 / 52

CMMI cont’d

Two sub-models:

“Staged CMMI”
“Continuous CMMI”

The Staged CMMI model is analogous to the CMM, except that
there are 6 rather than 5 levels.

42 / 52

Empirical evidence

Certainly there are success stories from CMM. But to what
extent do these show that adopting CMM results in
improvements?

Selection bias. Adopting CMM is unlikely to be done at
random. What sort of organisations would adopt CMM? Can
we reliably generalize to other sorts of organisation?
Reporting bias. Suppose an organisation tries to adopt CMM
and it goes badly. How likely are they to report this to
outsiders?

43 / 52

Empirical evidence

Certainly there are success stories from CMM. But to what
extent do these show that adopting CMM results in
improvements?
Selection bias. Adopting CMM is unlikely to be done at
random. What sort of organisations would adopt CMM? Can
we reliably generalize to other sorts of organisation?

Reporting bias. Suppose an organisation tries to adopt CMM
and it goes badly. How likely are they to report this to
outsiders?

44 / 52

Empirical evidence

Certainly there are success stories from CMM. But to what
extent do these show that adopting CMM results in
improvements?
Selection bias. Adopting CMM is unlikely to be done at
random. What sort of organisations would adopt CMM? Can
we reliably generalize to other sorts of organisation?
Reporting bias. Suppose an organisation tries to adopt CMM
and it goes badly. How likely are they to report this to
outsiders?

45 / 52

Critique by James Bach

James Bach, founder of Satisfice, formerly at Apple and Borland
International:

“[given that] the CMM is a broad, and increasingly deep,
set of assertions as to what constitutes good software
development practice, it’s reasonable to ask where those
assertions come from, and whether they are in fact complete
and correct.”7

7J Bach (1994), “The Immaturity of CMM”, originally published in American
Programmer. Available at https://www.satisfice.com/blog/archives/6208

46 / 52

https://www.satisfice.com/blog/archives/6208

Bach, cont’d

“My thesis. . . is that the CMM is a particular mythology
about software process evolution that cannot legitimately
claim to be a natural or essential representation of software
processes.”

47 / 52

Bach, cont’d

The CMM is

“at best a consensus among a particular group of software theorists
and practitioners”

“at worst a whitewash that obscures the true dynamics of software
engineering [and] suppresses alternative models”

“If an organization follows it for its own sake, it may lead to the
collapse of that company’s competitive potential.”

48 / 52

Bach – key criticisms

CMM has no formal theoretical basis – based on the experience
of “very knowledgeable people”. But any other model based on
experiences of other knowledgeable people has equal veracity.
CMM has only vague empirical support – evidence forr it could
equally well support other models.

Based mainly on experience of large government contractors,
and Watts Humphrey’s experience in the mainframe world.

49 / 52

Bach – key criticisms, cont’d

CMM “reveres process, but ignores people”. Compare the work
Gerald Weinberg (author of “The Psychology of Computer
Programming”) – for Weinberg, the problems of human
interaction define engineering.

Humphrey and CMM mention assume that defined processes
can render individual excellence less important – process makes
up for mediocrity.

CMM “reveres institutionalization of process for its own sake”.
But even if processes are not institutionalized formally, they
may very well be in place, informally, by virtue of the skill of the
team members.

CMM “contains very little information on process dynamics”.
Many seemingly arbitrary choices – why isn’t “training” on
level 1? Why is defect prevention a level 5 practice?

50 / 52

Bach – key criticisms, cont’d

CMM “encourages displacement of goals from the true mission
of improving process to the artificial mission of achieving a
higher maturity level”. Can blind an organization to the most
effective use of its resources.

51 / 52

Other criticisms

Short blog post by Bertrand Meyer, developer of the Eiffel
language.8 Commenting on CMMI, but applies largely to both
CMM and CMMI:

A much better name would have been “Catalog of Assess-
able Process Practices”, which is even pronounceable as
an acronym, and defines the key elements: the approach is
based on recognized best practices; these practices apply
to processes (of an organization); they must be subject to
assessment (the most visible part of CMMI — the famous
five levels — although not necessarily the most important
one); and they are collected into a catalog. If “catalog” is
felt too lowly, “collection” would also do.

8Meyer (2013), “What is wrong with CMMI?”
https://bertrandmeyer.com/2013/05/12/what-is-wrong-with-cmmi/

52 / 52

https://bertrandmeyer.com/2013/05/12/what-is-wrong-with-cmmi/

