The University of Western Australia School of Computer Science and Software Engineering

CITS5502 Software Processes

Lecture 4 Revision of Measurement Theory

Key concepts

- What is a Metric?
 - Measurement of some abstract property of a system or process
 - Relationship of *Precision*, *Accuracy*, and *Relevance*
 - Mathematical axioms for a metric
 - Desirable properties of a metric
- Purpose of Metrics
 - Prediction; Control; Improvement; Optimization
- Aspects of definition of a metric
 - Measurement leads to improvement
 - Non-measurement leads to deterioration
 - Metrics must be aligned with organizational objectives

Key concepts (cont.)

- Type of measurement and use statistical methods
- Validation of metrics
 - Mathematically, Qualitative, Provides information
- Simple taxonomy of software metrics
 Quality; Product; Process; Organization and Drivers

What is a Metric?

 A metric is a formal measurement designed to associate a number with some characteristic of the things you want to assess.

 It is not always straightforward to define a metric on what you want to measure, e.g., *How would you measure the size of a system?*

Examples

 Suppose that we want to estimate how long (in *months*) it would take to do a project, we can use the formula below to estimate the error:

$$Error = \frac{|Estimate - Actual|}{Actual}$$

This is the **relative error** of our estimate.

 If we have n projects, then we can compute the mean magnitude of relative error (MMRE):

$$\text{MMRE} = \frac{1}{n} \sum_{i=1}^{n} \text{Error}_{i}$$

Types of Measurement

Scale Name	Operations	Examples
Nominal	Comparison	Companies Languages
Ordinal	Ranking	Preferences Relative sizes
Interval	Addition Subtraction	Time Temperature
Ratio	Multiplication Division	Length Size
Absolute		Census

Nominal and Ordinal data items may (for convenience) have numeric labels (e.g., Aboriginal=1, Caucasian=2, Mongoloid=3, Negro=4) but this does not imply that one is twice as great as another!

UWA, School of CSSE

Examination of Data

- For statistical purposes, the distribution of a data item may be inspected by means of
 - a histogram with a mode for nominal data
 - a histogram with a median for ordinal data
 - a continuous distribution with a mean for interval, ratio, or absolute data
- Two data items of the same type may be compared by means of
 - a contingency table for nominal or ordinal data
 - a scattergram for interval, ratio, or absolute data

Examination of Data (cont.)

- Combining data items of different types produces an item with the characteristics of the lower type.
 - For example, Size (in lines of code [ratio]) multiplied by Complexity (judged on a 1 to 5 scale [ordinal]) of a piece of computer code produces a data item that looks like a ratio number but only has the precision of an ordinal number.

Desirable Properties for Software Metrics

Conforming to the needs of people

- 1. Understandable the measurement mechanism is easily understood by all affected parties
- 2. Non-threatening focused on the artefact and not people

Conforming to measurement theory

- 3. Objective is independent of anyone's opinion
- 4. Reproducible can be consistently repeated
- 5. Standardized uses a mathematically appropriate scale
- 6. Formally valid conforms to sets of mathematical axioms
- Informally valid is clearly related to the feature being measured – it monotonically increases as the feature rises
- Precise discriminates between levels of the feature measured (i.e., it is sensitive to changes at the required level of granularity)

Desirable Properties for Software Metrics (cont.)

- Conforming to measurement theory
 - Robust is not easily manipulated nor sensitive to extraneous factors
 - 10. Comparable is highly correlated with other metrics purporting to measure the same feature
 - 11. Useful provides information which reduces uncertainty
- Conforming to the needs of management
 - 12. Sustainable over time is likely to be valid in the future so that trend forecasts based on the metric will be useful
 - 13. Scalable can be translated into metrics for macro or micro parts of the product or process
 - 14. Timely can be obtained in time for action to be taken on its message

Desirable Properties for Software Metrics (cont.)

Conforming to the needs of management

- 15. Effective clearly identifies significant areas for improvement
- 16. Efficient does not consume significant resources (preferably a by-product of other activities)
- 17. Relevant supports the goals of the organization

Recommended Reading

- Royce: Appendix C "Change Metrics"
- Wysocki: Appendix J "Project Performance Reporting"
- Pressman: Sections on "FURPS" or "ISO 9126 Quality Factors"
- Sommerville: Sections "Analysis of Measurements", "Interface Evaluation"