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Abstract— This paper proposes S-MAC, a medium-access con-
trol (MAC) protocol designed for wireless sensor networks. Wire-
less sensor networks use battery-operated computing and sensing
devices. A network of these devices will collaborate for a common
application such as environmental monitoring. We expect sensor
networks to be deployed in an ad hoc fashion, with nodes
remaining largely inactive for long time, but becoming suddenly
active when something is detected. These characteristics of sensor
networks and applications motivate a MAC that is different from
traditional wireless MACs such as IEEE 802.11 in several ways:
energy conservation and self-configuration are primary goals,
while per-node fairness and latency are less important. S-MAC
uses a few novel techniques to reduce energy consumption and
support self-configuration. It enables low-duty-cycle operation
in a multi-hop network. Nodes form virtual clusters based on
common sleep schedules to reduce control overhead and enable
traffic-adaptive wake-up. S-MAC uses in-channel signaling to
avoid overhearing unnecessary traffic. Finally, S-MAC applies
message passing to reduce contention latency for applications
that require in-network data processing. The paper presents
measurement results of S-MAC performance on a sample sensor
node, the UC Berkeley Mote, and reveals fundamental trade-offs
on energy, latency and throughput. Results show that S-MAC
obtains significant energy savings compared with an 802.11-like
MAC without sleeping.

Index Terms— Medium access control, Sensor network, Wire-
less network, Energy efficiency

I. INTRODUCTION

W IRELESS sensor networking is an emerging technol-
ogy that has a wide range of potential applications

including environment monitoring, smart spaces, medical sys-
tems and robotic exploration. Such networks will consist of
large numbers of distributed nodes that organize themselves
into a multi-hop wireless network. Each node has one or more
sensors, embedded processors and low-power radios, and is
normally battery operated. Typically, these nodes coordinate
to perform a common task.

Like in all shared-medium networks, medium access control
(MAC) is an important technique that enables the successful
operation of the network. One fundamental task of the MAC
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protocol is to avoid collisions from interfering nodes. There are
many MAC protocols that have been developed for wireless
voice and data communication networks. Typical examples in-
clude the time division multiple access (TDMA), code division
multiple access (CDMA), and contention-based protocols like
IEEE 802.11 [1].

To design a good MAC protocol for the wireless sensor
networks, we have considered the following attributes. The
first is the energy efficiency. As stated above, sensor nodes
are likely to be battery powered, and it is often very difficult
to change or recharge batteries for these nodes. In fact,
someday we expect some nodes to be cheap enough that
they are discarded rather than recharged. Prolonging network
lifetime for these nodes is a critical issue. Another important
attribute is scalability and adaptivity to changes in network
size, node density and topology. Some nodes may die over
time; some new nodes may join later; some nodes may move
to different locations. A good MAC protocol should gracefully
accommodate such network changes. Other typically important
attributes including fairness, latency, throughput and band-
width utilization may be secondary in sensor networks.

This paper presents sensor-MAC (S-MAC), a MAC protocol
explicitly designed for wireless sensor networks. While reduc-
ing energy consumption is the primary goal in our design, S-
MAC also achieves good scalability and collision avoidance
by utilizing a combined scheduling and contention scheme.
To achieve the primary goal of energy efficiency, we need to
identify what are the main sources that cause inefficient use
of energy as well as what trade-offs we can make to reduce
energy consumption.

We have identified the following major sources of en-
ergy waste. The first one is collision. When a transmitted
packet is corrupted, it has to be discarded, and follow-
on re-transmissions increase energy consumption. Collision
increases latency as well. The second source is overhearing,
meaning that a node picks up packets that are destined to other
nodes. The third source is control packet overhead. Sending
and receiving control packets consumes energy too. The last
major source of inefficiency is idle listening, i.e., listening to
receive possible traffic that is not sent. This is especially true
in many sensor network applications. If nothing is sensed,
nodes are in idle mode for most of the time. However, in
many MAC protocols such as IEEE 802.11 ad hoc mode or
CDMA nodes have to listen to the channel to receive possible
traffic. Measurements have shown that idle listening consumes
50–100% of the energy required for receiving. For example,
Stemm and Katz measure that the idle:receive:send ratios are
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1:1.05:1.4 [2], while the Digitan wireless LAN module (IEEE
802.11/2Mbps) specification shows idle:receive:send ratios is
1:2:2.5 [3]. Most sensor networks are designed to operate for
long time, and nodes will be in idle state for long time. Thus,
idle listening is a dominant factor of energy waste in such
cases.

S-MAC tries to reduce energy waste from all the above
sources. In exchange it accepts some performance reduction
in both per-hop fairness and latency. The first technique in
S-MAC is to establish low-duty-cycle operation on nodes in
a multi-hop network. It reduces idle listening by periodically
putting nodes into sleep state. In the sleep state, the radio
is completely turned off. In protocols for traditional data
networks like the IEEE 802.11, bandwidth utilization is a big
concern, and nodes normally operate in fully active mode.
Switching to low-duty-cycle mode (called power save mode
in the IEEE 802.11) is an option of each node, and it normally
happens when a node has been idle for long time. In S-MAC,
however, the low-duty-cycle mode is the default operation
of all nodes. They only become more active when there is
traffic in the network. To reduce control overhead and latency,
S-MAC introduces coordinated sleeping among neighboring
nodes.

Latency can be important or unimportant depending on what
application is running. In applications such as surveillance or
monitoring, nodes will be vigilant for long time, but largely
inactive until something is detected. These applications can
often tolerate some additional messaging latency, because the
network speed is typically orders of magnitude faster than the
speed of a physical object. The speed of the sensed object
places a bound on how rapidly the network must react. During
a period that there is no sensing event, there is normally very
little data flowing in the network. Sub-second latency is not
important, and we can trade it off for energy savings. S-MAC
therefore lets nodes periodically sleep if otherwise they are
idle. The design reduces energy consumption, but increases
latency, since a sender must wait for the receiver to wake up
before it can send out data. A new technique, called adaptive
listen, is introduced in the paper, which is able to greatly
reduce such latency.

In traditional wireless voice or data networks, each user
desires equal opportunity and time to access the medium, i.e.,
sending or receiving packets for their own applications. Per-
hop MAC level fairness is thus an important issue. However,
in sensor networks, all nodes cooperate for a single common
task. At any particular time, one node may have dramatically
more data to send than some other nodes. In this case fairness
is not important as long as application-level performance is
not degraded. S-MAC re-introduces the concept of message
passing to efficiently transmit long messages. The basic idea
is to divide a long message into small fragments and transmit
them in a burst. The result is that a node who has more data
to send gets more time to access the medium. From a per-
hop, MAC level perspective, this is unfair for nodes who only
have some short packets to send. However, as shown later,
message passing saves energy by reducing control overhead
and avoiding overhearing.

An important feature of wireless sensor networks is the

in-network data processing. It greatly reduces energy con-
sumption compared to transmitting all the raw data to the
end node [4], [5], [6]. Techniques such as data aggregation
can reduce traffic, while collaborative signal processing can
reduce traffic and improve sensing quality. In-network pro-
cessing requires store-and-forward processing of messages.
A message is a meaningful unit of data that a node can
process (average or filter, etc.). It may be long and consists
of many small fragments. In this case, MAC protocols that
promote fragment-level fairness actually increase message-
level latency. In contrast, message passing reduces message-
level latency by trading off the fragment-level fairness.

To demonstrate the effectiveness and measure the perfor-
mance of S-MAC, we have implemented it on our testbed
wireless sensor nodes, Motes, developed by University of
California, Berkeley [7] and manufactured by Crossbow Tech-
nology, Inc. [8] The mote runs on a very small event-driven
operating system called TinyOS [9]. We evaluated S-MAC
design trade-offs on this platform.

The contributions of this paper are as follows.

• An implemented low-duty-cycle scheme in multi-hop
networks that significantly reduces energy consumption
by avoiding idle listening.

• A demonstrated technique of adaptive listening that
greatly reduces the latency caused by periodic sleeping.

• Use of in-channel signaling to avoid energy waste on
overhearing, extending the work of PAMAS [10].

• Applying message passing to reduce application-
perceived latency and control overhead.

• Experimental measurement and evaluation of S-MAC
performance on energy, latency and throughput over
sensor-net hardware.

The early work of S-MAC was published in [11]. This
paper includes significant extensions in the protocol design,
implementation and experiments.

II. RELATED WORK

Medium access control is a broad research area, including
work in the new area of low power and wireless sensor net-
works [12], [13], [14], [15]. Current MAC design for wireless
sensor networks can be broadly divided into contention-based
and TDMA protocols.

Contention-based MACs. The standardized IEEE 802.11
distributed coordination function (DCF) [1] is an example
of the contention-based protocol, and is mainly built on the
research protocol MACAW [16]. It is widely used in ad hoc
wireless networks because of its simplicity and robustness to
the hidden terminal problem. However, recent work [2] has
shown that the energy consumption using this MAC is very
high when nodes are in idle mode. This is mainly due to
the idle listening. 802.11 has a power save mode, and we
will discuss it shortly. PAMAS [10] made an improvement
on energy savings by trying to avoid the overhearing among
neighboring nodes. Our paper also exploits the same idea. The
main difference of our work with PAMAS is that we do not use
any out-of-channel signaling. Whereas in PAMAS, it requires
two independent radio channels, which in most cases indicates
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two independent radio systems on each node. PAMAS does
not attempt to reduce idle listening.

TDMA-based MACs. The other class of MAC protocols are
based on reservation and scheduling, for example TDMA-
based protocols. TDMA protocols have a natural advantage
of energy conservation compared to contention protocols,
because the duty cycle of the radio is reduced and there is
no contention-introduced overhead and collisions. However,
using TDMA protocol usually requires the nodes to form
real communication clusters, like Bluetooth [17], [18] and
LEACH [14]. Most nodes in a real cluster are restricted
to communicate within the cluster. Managing inter-cluster
communication and interference is not an easy task. Moreover,
when the number of nodes within a cluster changes, it is
not easy for a TDMA protocol to dynamically change its
frame length and time slot assignment. So its scalability is
normally not as good as that of a contention-based protocol.
For example, Bluetooth may have at most 8 active nodes in a
cluster.

Sohrabi and Pottie [13] proposed a self-organization pro-
tocol for wireless sensor networks. Each node maintains a
TDMA-like frame, called super frame, in which the node
schedules different time slots to communicate with its known
neighbors. At each time slot, it only talks to one neighbor. To
avoid interference between adjacent links, the protocol assigns
different channels, i.e., frequency (FDMA) or spreading code
(CDMA), to potentially interfering links. Although the super
frame structure is similar to a TDMA frame, it does not prevent
two interfering nodes from accessing the medium at the same
time. The actual multiple access is accomplished by FDMA
or CDMA. A drawback of the scheme is its low bandwidth
utilization. For example, if a node only has packets to be sent
to one neighbor, it cannot reuse the time slots scheduled to
other neighbors.

Woo and Culler [15] examined different configurations of
carrier sense multiple access (CSMA) and proposed an adap-
tive rate control mechanism, whose main goal is to achieve
fair bandwidth allocation to all nodes in a multi-hop network.
They have used the motes and TinyOS platform to test and
measure different MAC schemes. In comparison, our approach
does not promote per-node fairness, and even trades it off for
further energy savings.

Finally, we look at some work on low-duty-cycle operation
of nodes, which are closely related to S-MAC. The first
example is Piconet [12], which is an architecture designed
for low-power ad hoc wireless networks. Piconet also puts
nodes into periodic sleep for energy conservation. However,
there is no coordination and synchronization among nodes
about their sleep and listen time. The scheme to enable the
communications among neighboring nodes is to let a node
broadcast its address when it wakes up from sleeping. If a
sender wants to talk to a neighbor, it must keep listening until
it receives the neighbor’s broadcast. In contrast, S-MAC tries
to coordinate and synchronize neighbors’ sleep schedules to
reduce latency and control overhead.

Perhaps the power save (PS) mode in IEEE 802.11 DCF
is the most related work to the low-duty-cycle operation in
S-MAC. Nodes in PS mode periodically listen and sleep, just
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Fig. 1. Periodic listen and sleep.

like that in S-MAC. The sleep schedules of all nodes in the
network are synchronized together. The main difference to S-
MAC is that the PS mode in 802.11 is designed for a single-
hop network, where all nodes can hear each other, simplify-
ing the synchronization. As observed by [19], in multi-hop
operation, the 802.11 PS mode may have problems in clock
synchronization, neighbor discovery and network partitioning.
In fact, the 802.11 MAC in general is designed for a single-
hop network, and there are questions about its performance in
multi-hop networks [20]. In comparison, S-MAC is designed
for multi-hop networks, and does not assume that all nodes
are synchronized together. Finally, although 802.11 defines PS
mode, it provides very limited policy about when to sleep.
Whereas in S-MAC, we define a complete system.

Tseng et al. [19] proposed three sleep schemes to improve
the PS mode in the IEEE 802.11 for its operation in multi-
hop networks. Among them the one named periodically-fully-
awake-interval is the most closest to the scheme of periodic
listen and sleep in S-MAC. However, their scheme does not
synchronize the sleep schedules of any neighboring nodes. The
control overhead and latency can be large. For example, to
send a broadcast packet, the sender has to explicitly wake up
each individual neighbor before it sends out the actual packet.
Without synchronization, each node has to send beacons more
frequently to prevent long-term clock drift.

III. S-MAC DESIGN OVERVIEW

S-MAC includes approaches to reduce energy consumption
from all the sources of energy waste that we have identified,
i.e., idle listening, collision, overhearing and control overhead.
Before describing the components in S-MAC, we first sum-
marize our assumptions about the wireless sensor network and
its applications.

Sensor networks will consist of large numbers of nodes to
take advantage of short-range, multi-hop communications to
conserve energy [4]. Most communications will occur between
nodes as peers, rather than to a single base-station. In-network
processing is critical to network lifetime [5], and implies that
data will be processed as whole messages in a store-and-
forward fashion. Packet or fragment-level interleaving from
multiple sources only increases overall latency. Finally, we
expect that applications will have long idle periods and can
tolerate latency on the order of network messaging time.

A. Periodic Listen and Sleep

As stated above, in many sensor network applications, nodes
are idle for long time if no sensing event happens. Given the
fact that the data rate is very low during this period, it is not
necessary to keep nodes listening all the time. S-MAC reduces
the listen time by putting nodes into periodic sleep state.
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Fig. 2. Neighboring nodes A and B have different schedules. They
synchronize with nodes C and D respectively.

The basic scheme is shown in Figure 1. Each node sleeps
for some time, and then wakes up and listens to see if any
other node wants to talk to it. During sleeping, the node turns
off its radio, and sets a timer to awake itself later.

We call a complete cycle of listen and sleep a frame. The
listen interval is normally fixed according to physical-layer
and MAC-layer parameters, e.g., the radio bandwidth and the
contention window size. The duty cycle is defined as the ratio
of the listen interval to the frame length. The sleep interval can
be changed according to different application requirements,
which actually changes the duty cycle. For simplicity these
values are the same for all nodes.

All nodes are free to choose their own listen/sleep schedules.
However, to reduce control overhead, we prefer neighboring
nodes to synchronize together. That is, they listen at the same
time and go to sleep at the same time. It should be noticed
that not all neighboring nodes can synchronize together in a
multi-hop network. Two neighboring nodes A and B may have
different schedules if they must synchronize with different
nodes, C and D, respectively, as shown in Figure 2.

Nodes exchange their schedules by periodically broadcast-
ing a SYNC packet to their immediate neighbors. A node talks
to its neighbors at their scheduled listen time, thus ensuring
that all neighboring nodes can communicate even if they have
different schedules. In Figure 2, for example, if node A wants
to talk to node B, it waits until B is listening. The period for
a node to send a SYNC packet is called the synchronization
period.

One characteristic of S-MAC is that it forms nodes into
a flat, peer-to-peer topology. Unlike clustering protocols, S-
MAC does not require coordination through cluster heads.
Instead, nodes form virtual clusters around common schedules,
but communicate directly with peers. One advantage of this
loose coordination is that it can be more robust to topology
change than cluster-based approaches.

The downside of the scheme is the increased latency due to
the periodic sleeping. Furthermore, the delay can accumulate
on each hop. In Section IV we will present a technique that
is able to significantly reduce such latency.

B. Collision Avoidance

If multiple neighbors want to talk to a node at the same
time, they will try to send when the node starts listening.
In this case, they need to contend for the medium. Among
contention protocols, the 802.11 does a very good job on col-
lision avoidance. S-MAC follows similar procedures, including
virtual and physical carrier sense, and the RTS/CTS exchange
for the hidden terminal problem [16].

There is a duration field in each transmitted packet that
indicates how long the remaining transmission will be. If a
node receives a packet destined to another node, it knows

how long to keep silent from this field. The node records
this value in a variable called the network allocation vector
(NAV) [1] and sets a timer for it. Every time when the timer
fires, the node decrements its NAV until it reaches zero. Before
initiating a transmission, a node first looks at its NAV. If its
value is not zero, the node determines that the medium is busy.
This is called virtual carrier sense.

Physical carrier sense is performed at the physical layer
by listening to the channel for possible transmissions. Carrier
sense time is randomized within a contention window to avoid
collisions and starvations. The medium is determined as free
if both virtual and physical carrier sense indicate that it is free.

All senders perform carrier sense before initiating a trans-
mission. If a node fails to get the medium, it goes to sleep
and wakes up when the receiver is free and listening again.
Broadcast packets are sent without using RTS/CTS. Unicast
packets follow the sequence of RTS/CTS/DATA/ACK between
the sender and the receiver. After the successful exchange of
RTS and CTS, the two nodes will use their normal sleep time
for data packet transmission. They do not follow their sleep
schedules until they finish the transmission.

With the low-duty-cycle operation and the contention mech-
anism during each listen interval, S-MAC effectively addresses
the energy waste due to idle listening and collisions. In the
next section, we will present details of the periodic sleep
coordinated among neighboring nodes. Then we will present
two techniques that further reduce the energy waste due to
overhearing and control overhead.

IV. COORDINATED SLEEPING

Periodic sleeping effectively reduces energy waste on idle
listening. In S-MAC, nodes coordinate their sleep schedules
rather than randomly sleep on their own. This section details
the procedures that all nodes follow to set up and maintain
their schedules. It also presents a technique to reduce latency
due to the periodic sleep on each node.

A. Choosing and Maintaining Schedules

Before each node starts its periodic listen and sleep, it needs
to choose a schedule and exchange it with its neighbors. Each
node maintains a schedule table that stores the schedules of
all its known neighbors. It follows the steps below to choose
its schedule and establish its schedule table.

1) A node first listens for a fixed amount of time, which
is at least the synchronization period. If it does not hear
a schedule from another node, it immediately chooses
its own schedule and starts to follow it. Meanwhile, the
node tries to announce the schedule by broadcasting a
SYNC packet. Broadcasting a SYNC packet follows the
normal contention procedure. The randomized carrier
sense time reduces the chance of collisions on SYNC
packets.

2) If the node receives a schedule from a neighbor before
choosing or announcing its own schedule, it follows that
schedule by setting its schedule to be the same. Then
the node will try to announce its schedule at its next
scheduled listen time.
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3) There are two cases if a node receives a different sched-
ule after it chooses and announces its own schedule.
If the node has no other neighbors, it will discard its
current schedule and follow the new one. If the node
already follows a schedule with one or more neighbors,
it adopts both schedules by waking up at the listen
intervals of the two schedules.

To illustrate this algorithm, consider a network where all
nodes can hear each other. The node who starts first will
pick up a schedule first, and its broadcast will synchronize
all its peers on its schedule. If two or more nodes start first
at the same time, they will finish initial listening at the same
time, and will choose the same schedule independently. No
matter which node sends out its SYNC packet first (wins the
contention), it will synchronize the rest of the nodes.

However, two nodes may independently assign schedules if
they cannot hear each other in a multi-hop network. In this
case, those nodes on the border of two schedules will adopt
both. For example, nodes A and B in Figure 2 will wake up at
the listen time of both schedules. In this way, when a border
node sends a broadcast packet, it only needs to send it once.
The disadvantage is that these border nodes have less time to
sleep and consume more energy than others.

Another option is to let a border node adopt only one
schedule — the one it receives first. Since it knows that some
other neighbors follow another schedule, it can still talk to
them. However, for broadcasting, it needs to send twice to the
two different schedules. The advantage is that the border nodes
have the same simple pattern of periodic listen and sleep as
other nodes.

We expect that nodes only rarely see multiple schedules,
since each node tries to follow an existing schedule before
choosing an independent one. However, a new node may
still fail to discover an existing neighbor for a few reasons.
The SYNC packet from the neighbor could be corrupted by
collisions or interference. The neighbor may have delayed
sending a SYNC packet due to the busy medium. If the new
node is on the border of two schedules, it may only discover
the first one if the two schedules do not overlap.

To prevent the case that two neighbors miss each other
forever when they follow completely different schedules, S-
MAC introduces periodic neighbor discovery, i.e., each node
periodically listens for the whole synchronization period. The
frequency with which a node performs neighbor discovery
depends on the number of neighbors it has. If a node does
not have any neighbor, it performs neighbor discovery more
aggressively than in the case that it has many neighbors. Since
the energy cost is high during the neighbor discovery, it should
not be performed too often. In our current implementation, the
synchronization period is 10 seconds, and a node performs
neighbor discovery every 2 minutes if it has at least one
neighbor.

B. Maintaining Synchronization

Since neighboring nodes coordinate their sleep schedules,
the clock drift on each node can cause synchronization errors.
We use two techniques to make it robust to such errors. First,
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Got CTS

Got CTSTx SYNC

Tx SYNC

Receiver Listen

Sender 1

CS

CS

Sender 3

for RTS for CTS Sleep

Sleep

Sender 2

for SYNC

CS

CS

Tx RTS

Send data

Send data

Fig. 3. Timing relationship between a receiver and different senders.
CS stands for carrier sense.

all exchanged timestamps are relative rather than absolute.
Second, the listen period is significantly longer than clock
drift rates. For example, the listen time of 0.5s is more than
105 times longer than typical clock drift rates. Compared to
TDMA schemes with very short time slots, S-MAC requires
much looser time synchronization.

Although the long listen time can tolerate fairly large clock
drift, neighboring nodes still need to periodically update each
other with their schedules to prevent long-term clock drift. The
synchronization period can be quite long. The measurements
on our testbed nodes show that the clock drift between two
nodes does not exceed 0.2ms per second.

As mentioned earlier, schedule updating is accomplished by
sending a SYNC packet. The SYNC packet is very short, and
includes the address of the sender and the time of its next
sleep. The next sleep time is relative to the moment that the
sender starts transmitting the SYNC packet. When a receiver
gets the time from the SYNC packet it subtracts the packet
transmission time and use the new value to adjust its timer.

In order for a node to receive both SYNC packets and data
packets, we divide its listen interval into two parts. The first
one is for SYNC packets, and the second one is for data
packets, as shown in Figure 3. Each part has a contention
window with many time slots for senders to perform carrier
sense. For example, if a sender wants to send a SYNC packet,
it starts carrier sense when the receiver begins listening. It
randomly selects a time slot to finish its carrier sense. If it has
not detected any transmission by the end of that time slot, it
wins the contention and starts sending its SYNC packet. The
same procedure is followed when sending data packets.

Figure 3 shows the timing relationship of three possible
situations that a sender transmits to a receiver. Sender 1 only
sends a SYNC packet. Sender 2 only sends a unicast data
packet. Sender 3 sends both a SYNC and a data packet.
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C. Adaptive Listening

The scheme of periodic listen and sleep is able to signif-
icantly reduce the time spent on idle listening when traffic
load is light. However, when a sensing event indeed happens,
it is desirable that the sensing data can be passed through
the network without too much delay. When each node strictly
follows its sleep schedule, there is a potential delay on each
hop, whose average value is proportional to the length of
the frame. We therefore introduce a mechanism to switch the
nodes from the low-duty-cycle mode to a more active mode
in this case.

S-MAC proposes an important technique, called adaptive
listen, to improve the latency caused by the periodic sleep of
each node in a multi-hop network. The basic idea is to let the
node who overhears its neighbor’s transmissions (ideally only
RTS or CTS) wake up for a short period of time at the end of
the transmission. In this way, if the node is the next-hop node,
its neighbor is able to immediately pass the data to it instead
of waiting for its scheduled listen time. If the node does not
receive anything during the adaptive listening, it will go back
to sleep until its next scheduled listen time.

Let us look at the timing diagram in Figure 3 again. If
the next-hop node is a neighbor of the sender, it will receive
the RTS packet. If it is only a neighbor of the receiver, it
will receive the CTS packet from the receiver. Thus, both the
neighbors of the sender and receiver will learn about how long
the transmission is from the duration field in the RTS and
CTS packets. So they are able to adaptively wake up when
the transmission is over.

The interval of the adaptive listening does not include the
time for the SYNC packet as in the normal listen interval
(see Figure 3). SYNC packets are only sent at scheduled
listen time to ensure all neighbors can receive it. To give the
priority to the SYNC packet, adaptive listen and transmission
are not performed if the duration from the time the previous
transmission is finished to the normally scheduled listen time
is shorter than the adaptive listen interval.

It should be noted that not all next-hop nodes can overhear
a packet from the previous transmission, especially when
the previous transmission starts adaptively, i.e., not at the
scheduled listen time. So if a sender starts a transmission by
sending out an RTS packet during the adaptive listening, it
might not get a CTS reply. In this case, it just goes back to
sleep and will try again at the next normal listen time.

D. Latency Analysis

This subsection analyzes the multi-hop latency of MAC
protocols, and quantifies the delay introduced by periodic
sleeping in S-MAC. For a packet moving through a multi-hop
network, it experiences the following delays at each hop:

Carrier sense delay is introduced when the sender performs
carrier sense. Its value is determined by the contention window
size.

Backoff delay happens when carrier sense fails, either
because the node detects another transmission or because
collision occurs.

Transmission delay is determined by channel bandwidth,
packet length and the coding scheme adopted.

Propagation delay is determined by the distance between
the sending and receiving nodes. In sensor networks, node
distance is normally very small, and the propagation delay
can normally be ignored.

Processing delay. The receiver needs to process the packet
before forwarding it to the next hop. This delay mainly
depends on the computing power of the node and the efficiency
of in-network data processing algorithms.

Queuing delay depends on the traffic load. In the heavy
traffic case, queuing delay becomes a dominant factor.

The above delays are inherent to a multi-hop network using
contention-based MAC protocols. These factors are the same
for both S-MAC and 802.11-like protocols. An extra delay
in S-MAC is caused by the periodic sleeping of each node.
When a sender gets a packet to transmit, it must wait until the
receiver wakes up. We call it sleep delay since it is caused by
the sleep of the receiver.

We analyze the latency of different MAC protocols in the
simple case that the traffic load is very light, e.g., only one
packet is moving through the network, so that there is no
queuing delay and backoff delay. We further assume that the
propagation delay and the processing delay can be ignored.
In this case, only carrier sense delay, transmission delay and
sleep delay are taken into account.

Suppose there are N hops from the source to the sink. The
carrier sense delay is random at each hop, and we denote
its value at hop n by tcs,n. Its mean value is determined
by the contention window size, and is denoted by tcs. The
transmission delay is fixed if the packet length is fixed, which
is denoted by ttx.

We first look at the MAC protocol without sleeping. When
a node receives a packet, it immediately starts carrier sense
and tries to forward it to the next hop. The average delay at
hop n is tcs,n + ttx. The entire latency over N hops is

D(N) =

N∑

n=1

(tcs,n + ttx) (1)

So the average latency over N hops in the MAC without
sleeping is

E [D(N)] = N(tcs + ttx) (2)

Equation (2) shows that, in the MAC protocol without
sleeping, the multi-hop latency linearly increases with the
number of hops. The slope of the line is the average carrier
sense time plus the packet transmission time.

Now we look at S-MAC, which introduces a sleep delay at
each hop, denoted by ts,n for the nth hop. For simplicity, we
assume that all nodes along the path follow the same sleep
schedule. A frame is a complete cycle of listen and sleep, and
its length is denoted by Tf . Recall that the listen interval is
fixed, and the frame length can be changed by adjusting the
sleep interval. To reflect a very low duty cycle, e.g., ≤ 10%,
we assume that Tf has a large value, which is much larger
than ttx. The delay at hop n is

Dn = ts,n + tcs,n + ttx (3)



IEEE/ACM TRANSACTIONS ON NETWORKING (to appear) 7

Listen

s,n+2ttcs,n+1tcs,n t tx t tx tcs,n+2 t txs,nt

Tf

n n + 1 n + 2

i j k l

Listen Sleep Sleep

time

+ + +

Fig. 4. Adaptive listen can reduce sleep latency by at least half.

In S-MAC without adaptive listening, contention (carrier
sense) only starts at the beginning of each frame, i.e., the
time each node starts listening. After a node receives a packet
in a frame, it has to wait until the next-hop node to wake up,
which is the beginning of the next frame. This indicates

Tf = tcs,n−1 + ttx + ts,n (4)

So the sleep delay at hop n is

ts,n = Tf − (tcs,n−1 + ttx) (5)

Substituting by Equation (5), Equation (3) becomes

Dn = Tf + tcs,n − tcs,n−1 (6)

There is an exception on the first hop, because a packet
can be generated on the source node at any time within a
frame. So the sleep delay on the first hop, ts,1, is a random
variable whose value lies in (0, Tf ). Suppose ts,1 is uniformly
distributed in (0, Tf ). Its mean value is Tf/2. Combining it
with Equation (6), we have the overall delay of a packet over
N hops as

D(N) = D1 +

N∑

n=2

Dn

= ts,1 + tcs,1 + ttx +

N∑

n=2

(Tf + tcs,n − tcs,n−1)

= ts,1 + (N − 1)Tf + tcs,N + ttx (7)

So the average latency of S-MAC without adaptive listen over
N hops is

E [D(N)] = E [ts,1 + (N − 1)Tf + tcs,N + ttx]

= Tf/2 + (N − 1)Tf + tcs + ttx

= NTf − Tf/2 + tcs + ttx (8)

Equation (8) shows that the multi-hop latency also linearly
increases with the number of hops in S-MAC when each node
strictly follows its sleep schedules. The slope of the line is the
frame length Tf . Compared with Equation (2), Tf is normally
much larger than (tcs + ttx) due to the very low duty cycles.
Therefore, periodic sleeping introduces an additional delay at
each hop.

Now we look at S-MAC with adaptive listening. Figure 4
shows part of a multi-hop network, where the three hops are
denoted as n to (n + 2). Again, we assume all nodes follow
the same sleep schedule.

Suppose node i first waits for node j to wake up at its
normally scheduled listen time, and starts carrier sense for

sending data from that moment. The delay at hop n is still
expressed as Equation (3).

During the RTS/CTS exchange between nodes i and j,
the next-hop node k is also listening, and overhears j’s CTS
packet. So node k knows when the transmission from i to j
will finish. The adaptive listen mechanism will wake up node
k immediately after the previous transmission is done. It also
lets node j start carrier sense for sending to k at that time.
Thus the delay at hop (n + 1) is

Dn = tcs,n+1 + ttx (9)

Compared with the delay at the previous hop, there is no
sleep delay here. If the frame length Tf is larger than (tcs,n +
tcs,n+1 + 2ttx), the packet will travel over two hops in just
one frame. We assume this condition holds in the following
analysis, since we have assumed that Tf is much larger than
ttx.

On the other hand, node l is two-hop away from node j. It
may not be able to overhear j’s CTS packet as k does. In this
case, l cannot wake up when the transmission from i to j is
done. When j starts sending to k during the normal sleep time,
node l is not aware of it, since it is in sleep state. Therefore,
node l will not be able to wake up when the transmission from
j to k is done. Node k has to wait until l’s normal listen time
to start its transmission. The delay on hop (n + 2) is again
expressed by Equation (3).

Therefore, the sleep delay occurs at every other hop in S-
MAC with adaptive listen. The latency over N hops is

D(N) = ts,1 + tcs,1 + ttx + tcs,2 + ttx + ts,3 +

... + tcs,N−1 + ttx + tcs,N + ttx (10)

Note that (see Figure 4)

Tf = tcs,n + ttx + tcs,n+1 + ttx + ts,n+2 (11)

Equation (10) can be simplified as

D(N) = ts,1 + (N/2 − 1)Tf + tcs,N−1 + tcs,N + 2ttx (12)

Hence the average latency over N hops in S-MAC with
adaptive listen is

E [D(N)] = Tf/2 + (N/2 − 1)Tf + 2tcs + 2ttx

= NTf/2 + 2tcs + 2ttx − Tf/2 (13)

We can see that the average latency in S-MAC with adaptive
listen still linearly increases with the number of hops. Now the
slope of the line is Tf/2. Compared with that of no adaptive
listen (Equation (8)), it is reduced by half.

Equation (13) is obtained under the assumption that only 1-
hop neighbors can hear each other, but 2-hop neighbors cannot
hear each other. In real world this is not true in general. The
theory and measurement about radio propagation [21] have
shown that the received signal power Pr decreases with the
distance d as

Pr ∝ Ptd
β (14)

where Pt is the transmission power, and β is an environment-
dependent constant normally between 2–5 [21]. It is clear that
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Fig. 5. Who should sleep when node A is transmitting to B?

the transmission range does not suddenly stops at a certain
distance.

Let us look at Figure 4 again. If node k can reliably receive
from node j, say with correct reception rate of over 95%,
node l may still have good chances to receive some of j’s
CTS packets (especially CTS packets are very short). If two-
hop neighbors have 20%–30% probability to receive from
each other, the overall latency can be further reduced, since
some 2-hop-away nodes are also able to participate in adaptive
listening.

V. OVERHEARING AVOIDANCE AND MESSAGE PASSING

Collision avoidance is a basic task of MAC protocols.
S-MAC adopts a contention-based scheme. It is common
that any packet transmitted by a node is received by all
its neighbors even though only one of them is the intended
receiver. Overhearing makes contention-based protocols less
efficient in energy than TDMA protocols.

A. Overhearing Avoidance

In 802.11 each node keeps listening to all transmissions
from its neighbors in order to perform effective virtual carrier
sense. As a result, each node overhears many packets that
are not directed to itself. It is a significant waste of energy,
especially when node density is high and traffic load is heavy.

Inspired by PAMAS [10], S-MAC tries to avoid overhearing
by letting interfering nodes go to sleep after they hear an RTS
or CTS packet. Since DATA packets are normally much longer
than control packets, the approach prevents neighboring nodes
from overhearing long DATA packets and following ACKs.
Now we look at which nodes should sleep when there is an
active transmission in progress.

In Figure 5, nodes A, B, C, D, E, and F form a multi-
hop network where each node can only hear the transmissions
from its immediate neighbors. Suppose node A is currently
transmitting a data packet to B. Which of the remaining nodes
should go to sleep during this transmission?

Remember that collision happens at the receiver. It is clear
that node D should sleep since its transmission interferes with
B’s reception. Nodes E and F do not produce interference,
so they do not need to sleep. Should node C go to sleep?
C is two-hop away from B, and its transmission does not
interfere with B’s reception, so it is free to transmit to its
other neighbors like E. However, C is unable to get any reply
from E, e.g., CTS or data, because E’s transmission collides
with A’s transmission at node C. So C’s transmission is simply
a waste of energy. Moreover, after A sends to B, it may wait
for an ACK from B, and C’s transmission may corrupt the
ACK packet. In summary, all immediate neighbors of both
the sender and receiver should sleep after they hear the RTS

or CTS until the current transmission is over, as indicated by
“X” in Figure 5.

Each node maintains the NAV to indicate the activity in
its neighborhood. When a node receives a packet destined to
other nodes, it updates its NAV by the duration field in the
packet. A non-zero NAV value indicates that there is an active
transmission in its neighborhood. The NAV value decrements
every time when the NAV timer fires. Thus a node should
sleep to avoid overhearing if its NAV is not zero. It can wake
up when its NAV becomes zero.

We also note that in some cases overhearing is indeed
desirable. Some algorithms may rely on overhearing to gather
neighborhood information for network monitoring, reliable
routing or distributed queries [22]. If desired, S-MAC can
be configured to allow application specific overhearing to
occur. However, we suggest that algorithms without requiring
overhearing may be a better match to energy-limited networks.
For example, S-MAC uses explicit data acknowledgments
rather than implicit ones [15].

B. Message Passing

This subsection describes how to efficiently transmit a long
message in both energy and latency. A message is the col-
lection of meaningful, interrelated units of data. The receiver
usually needs to obtain all the data units before it can perform
in-network data processing or aggregation.

The disadvantages of transmitting a long message as a
single packet is the high cost of re-transmitting the long
packet if only a few bits have been corrupted in the first
transmission. However, if we fragment the long message into
many independent small packets, we have to pay the penalty
of large control overhead and longer delay. It is so because
the RTS and CTS packets are used in contention for each
independent packet.

Our approach is to fragment the long message into many
small fragments, and transmit them in a burst. Only one
RTS and one CTS are used. They reserve the medium for
transmitting all the fragments. Every time a data fragment is
transmitted, the sender waits for an ACK from the receiver.
If it fails to receive the ACK, it will extend the reserved
transmission time for one more fragment, and re-transmit the
current fragment immediately.

As before, all packets have the duration field, which is
now the time needed for transmitting all the remaining data
fragments and ACK packets. If a neighboring node hears an
RTS or CTS packet, it will go to sleep for the time that is
needed to transmit all the fragments.

Each data fragment or ACK also has the duration field.
In this way, if a node wakes up or a new node joins in the
middle of a transmission, it can properly go to sleep no matter
if it is the neighbor of the sender or the receiver. If the sender
extends the transmission time due to fragment losses or errors,
the sleeping neighbors will not be aware of the extension
immediately. However, they will learn it from the extended
fragments or ACKs when they wake up.

The purpose of using ACK after each data fragment is
to prevent the hidden terminal problem in the case that a
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neighboring node wakes up or a new node joins in the middle.
If the node is only the neighbor of the receiver but not the
sender, it will not hear the data fragments being sent by
the sender. If the receiver does not send ACKs frequently,
the new node may mistakenly infer from its carrier sense
that the medium is clear. If it starts transmitting, the current
transmission will be corrupted at the receiver.

It is worth to note that IEEE 802.11 also has fragmentation
support. In 802.11 the RTS and CTS only reserves the medium
for the first data fragment and the first ACK. The first fragment
and ACK then reserves the medium for the second fragment
and ACK, and so forth. For each neighboring node, after it
receives a fragment or an ACK, it knows that there is one
more fragment to be sent. So it has to keep listening until all
the fragments are sent. Again, for energy-constrained nodes,
overhearing by all neighbors wastes a lot of energy.

The 802.11 protocol is designed to promote fairness. If the
sender fails to get an ACK for any fragment, it must give up
the transmission and re-contend for the medium so that other
nodes have a chance to transmit. This approach can cause
a long delay if the receiver really needs the entire message
to start processing. In contrast, message passing extends the
transmission time and re-transmits the current fragment. It has
less contention and a small latency. S-MAC sets a limit on how
many extensions can be made for each message in case that
the receiver is really dead or lost in connection during the
transmission. However, for sensor networks, application-level
performance is the goal as opposed to per-node fairness.

VI. PROTOCOL IMPLEMENTATION

The purpose of our implementation is to demonstrate the
effectiveness of S-MAC and to compare it with protocols
that do not have all the energy-conserving features of S-
MAC. We use Motes, developed by UC Berkeley [7] and
Crossbow Technology, Inc. [8], as our development platform
and testbed. The motes are running TinyOS, an efficient event-
driven operating system for tiny sensor nodes [9], [23].

A. First Implementation on Rene Motes

An early implementation of S-MAC is on Rene motes,
which has the Atmel AT90LS8535 microcontroller [24] and
the TR1000 radio transceiver from RF Monolithics, Inc.
(RFM) [25]. The radio uses the OOK (on-off keyed) mod-
ulation, and provides a bandwidth of 10Kbps. It has three op-
erational modes: receiving, transmitting and sleep, consuming
13.5mW, 24.75mW and 15µW respectively [25]. There is no
power difference between listening and receiving.

We implemented three MAC modules on Rene motes:
1) An 802.11-like protocol without sleep
2) S-MAC without periodic sleep
3) S-MAC with periodic sleep
The 802.11-like protocol has the following pieces as in

IEEE 802.11 DCF: physical and virtual carrier sense, backoff
and retry, RTS/CTS/DATA/ACK packet exchange, and frag-
mentation support. In this protocol, nodes never go to sleep.

In the second module, periodic sleeping is disabled so that
each node runs in fully active mode. However, overhearing

Fig. 6. The UCB Mica Mote with a whip antenna.

avoidance and message passing are still there. Each node goes
into sleep only when its neighbors are in transmission.

The third module is S-MAC with periodic sleep. However,
adaptive listen was not implemented at that time. The listen
time in each frame is 300ms. The sleep time can be changed
to reflect different duty cycles. The synchronization period is
13 seconds.

B. Current Implementation on Mica Motes

Our current implementation is on Mica motes, which has the
Atmel ATmega128L microcontroller with 128KB of flash and
4KB of data memory. Our Mica motes are equipped with the
RFM TR3000 radio transceiver and a matched whip antenna
(see Figure 6). The modulation scheme is the amplitude
shift keying (ASK). The power consumptions of the radio in
receiving, transmitting and sleep modes are 14.4mW, 36mW
and 15µW respectively [26].

S-MAC implementation is not based on the standard com-
munication stack in the TinyOS release. Instead, we have
implemented a stack with some new features that are critical
to S-MAC.

First of all, our stack adopts a layered architecture. The
layers provide standard interfaces and services, so that pro-
tocols at different levels can be developed in parallel. Our
stack clearly separates the functions of the physical layer
and the MAC layer. The physical layer directly controls the
radio and provides APIs for upper layers to put the radio
into different states: sleep, idle, transmission and reception.
It does start symbol detection, channel coding and decoding,
byte buffering, and CRC check. It also provides the carrier
sense functionality, but gives the full control to the MAC layer.

Our stack uses a nested header structure for packet defi-
nition. It allows each layer to freely define its own packet
types as well as add its header fields to a packet coming from
its upper layers. When a component defines its own packet
format or header, it must include its immediate lower layer’s
header as the first field. In this way, each packet buffer includes
all header fields from all lower layers. Therefore, it avoids
memory copies across layers.

Details of our stack implementation are described in [27].
Some important parameters are listed here in Table I. We use
Manchester code as the channel coding scheme. It is a robust
DC-balanced code, and has a overhead of 1:2. That is, each
data bit becomes two bits after encoding. We chose these
parameters based on our understanding of the protocol and
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TABLE I

PARAMETERS OF S-MAC IMPLEMENTATION ON MICA MOTES

Radio bandwidth 20Kbps
Channel coding Manchester
Control packet length 10 bytes
Data packet length up to 250 bytes
MAC header length 8 bytes
Duty cycle 1% to 99%
Duration of listen interval 115 ms
Contention window for SYNC 15 slots
Contention window for data 31 slots

hardware characteristics. Thorough exploration of alternatives
is left for future work.

Our implementation allows a user to configure S-MAC into
different modes by selecting different options at compile time.
The followings are some important options.

• Duty cycle selection. This option allows a user to select
different duty cycles of S-MAC, from 1% to 99%.

• Fully active mode. This option completely disables the
periodic sleep cycles. This mode is mainly used for
performance comparison.

• Disable adaptive listen. Adaptive listen is enabled by
default in the low-duty-cycle mode. This option disables
adaptive listen, and each node strictly follows its listen
schedules.

Our current implementation coordinates radio sleeping.
Other hardware on the node can also be put into sleep,
including the CPU. Further work is required to integrate S-
MAC and CPU control to maximize energy conservation.

VII. EXPERIMENTATION

The goal of the experimentation is to reveal the fundamental
trade-offs of energy, latency and throughput in S-MAC. As a
comparison, we measured the performance of different MAC
modules we implemented.

To facilitate the measurement of multiple messages traveling
through a multi-hop network, we add a message queue at the
application layer to buffer the outgoing message on each node.

A. Measurement of Energy Consumption

To measure the energy consumption on the radio, we
measure the amount of time that the radio on each node has
spent in different modes: sleep, idle, receiving or transmitting.
The energy consumption in each mode is then calculated by
multiplying the time with the required power to operate the
radio in that mode. We measure energy indirectly because of
the difficulty in directly observing current draw on physically
small, low power motes. We compare the energy consumption
of different MAC modules under different traffic loads.

1) Tests on a Two-Hop Network: These tests are based on
our early implementation on Rene motes (Section VI-A). The
topology is a two-hop network with two sources and two sinks,
as shown in Figure 8. Packets from source A flow through
node C and end at sink D, while those from B also pass
through C but end at E.
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Fig. 7. Mean energy consumption on radios in each source node.
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Fig. 8. Topology 1: two-hop network with two sources and two sinks.

We change the traffic load by varying the inter-arrival period
of messages. If the message inter-arrival period is 5 seconds,
a message is generated every 5 seconds by each source node.
In this experiment, the message inter-arrival period varies
from 1s to 10s. For the highest rate with a 1s inter-arrival
time, the wireless channel is nearly fully utilized due to its
low bandwidth. For each traffic pattern, we have done 10
independent tests when using different MAC protocols.

In each test, each source periodically generates 10 messages,
which in turn is fragmented into 10 small data packets
(40 bytes each) supported by the TinyOS. Thus in each
experiment, there are 200 TinyOS data packets to be passed
from their sources to their sinks. We measure the energy
consumption of the radio on each node to pass the fixed
amount of data. The actual time to finish the transmission
is different for each MAC module.

In the 802.11-like MAC, the fragments of a message are
sent in a burst, i.e., RTS and CTS are only used for the first
fragment. We did not measure the 802.11-like MAC without
fragmentation, which treats each fragment as an independent
packet and uses RTS/CTS for each of them, since it is obvious
that this MAC consumes much more energy than the one
with fragmentation. In S-MAC message passing is used, and
fragments of a message are always transmitted in a burst. In the
S-MAC module with periodic sleep, each node is configured
to operate in 50% duty cycle.

Figure 7 shows the measured average energy consumption
on the source nodes A and B. The traffic is heavy when the
message inter-arrival time is less than 4s. In this case, 802.11
MAC uses more than twice the energy used by S-MAC. Since
idle listening rarely happens, energy savings from periodic
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Fig. 10. Topology 2: ten-hop linear network with one source and one
sink.

sleeping is very limited. S-MAC achieves energy savings
mainly by avoiding overhearing and efficiently transmitting
long messages.

When the message inter-arrival period is larger than 4s,
traffic load becomes light. In this case, the complete S-MAC
protocol has the best energy performance, and far outperforms
802.11 MAC. Message passing with overhearing avoidance
also performs better than 802.11 MAC. However, as shown
in the figure, when idle listening dominates the total energy
consumption, the periodic sleep plays a key role for energy
savings.

Compared with 802.11, message passing with overhearing
avoidance saves almost the same amount of energy under all
traffic conditions. This result is due to overhearing avoidance
among neighboring nodes A, B and C. The number of packets
sent by each of them are the same in all traffic conditions.

2) Tests on a Multi-Hop Network: These multi-hop ex-
periments are based on our implementation on Mica motes
(Section VI-B. The topology is a linear network with 11 nodes,
as shown in Figure 10. The nodes are configured to send in
the minimum transmission power, and are put in a 1-meter
space. The first node is the source, and last node is the sink.

As before, we vary the traffic load by changing the packet
inter-arrival time on the source node. This time the packet
inter-arrival time changes from 0s to 10s, where 0s means
all the packets are generated and queued at the same time
on the source node. Under each traffic condition, the test is
independently carried out for 5 times. In each test, the source
node sends 20 messages that are 100-byte long each. There is
no fragmentation on all messages.
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We have compared three different operation modes of S-
MAC. The first one is 10% duty cycle without adaptive listen.
The second one is 10% duty cycle with adaptive listen. The last
one is fully active mode, where periodic sleep is completely
disabled. Since the periodic listen interval is 115ms, 10% duty
cycle corresponds to a frame length of 1.15s.

Figure 9 shows the measured energy consumption on radios
in the entire network to pass the fixed amount of data from
the source to the sink. The result conforms with that we have
obtained on the two-hop network. S-MAC with periodic sleep
achieves substantial energy savings over the MAC without
periodic sleep in the multi-hop network, especially when traffic
load is light.

Comparing the two MAC modules that both running at the
10% duty cycle, we can see that the one with adaptive listen
achieves better energy efficiency than the one without adaptive
listen, especially when traffic load is heavy. The main reason is
that the adaptive listen largely reduces the overall time needed
to pass the fixed amount of data through the network.

B. Measurement of End-to-End Latency

Since S-MAC makes the trade-off of latency for energy
savings, we expect that it can have longer latency in a multi-
hop network due to the periodic sleep on each node. Adaptive
listen (Section IV-C) is designed to minimize such additional
latency. To quantify latency and measure the benefits of
adaptive listen, we use the same ten-hop network topology
in Figure 10 to measure the end-to-end latency of S-MAC.

We consider two extreme traffic conditions, the lowest traffic
load and highest traffic load. Under the lowest traffic load, the
second message is generated on the source node after the first
one is received by the sink. To do this, a coordinating node
is placed near the sink. When it hears that the sink receives
the message, it signals the source directly by sending at the
highest power. In this traffic load, there is no queuing delay
on each node. Compared with the MAC without sleep, the
extra delay is only caused by the periodic sleep on each node.
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Fig. 12. Mean message latency on each hop under the highest traffic
load.

Under the highest traffic load, all messages are generated and
queued on the source node at the same time. So there is a
maximum queuing delay on each node including the source
node. In both cases, we begin measuring the latency of each
message from the time it is generated on the source node.

In each test, the source node generates 20 messages, each
of 100 bytes. There is no fragmentation on these messages.
For the lowest traffic load, the packet generation time is
uniformly distributed within one frame. The test is repeated
for 10 times under both the lowest and the highest traffic load.
The measurement is on the same S-MAC modes as we used
in measuring the energy consumption in the same ten-hop
network.

Figure 11 shows the measured mean message latency on
each hop in the lowest traffic load. In all three S-MAC
modes, the latency increases linearly with the number of hops.
However, S-MAC at 10% duty cycle without adaptive listen
has much higher latency than the other two. The reason is that
each message has to wait for one sleep cycle on each hop.

The latency of S-MAC with adaptive listen, by comparison,
is very close to that of the MAC without any periodic sleep,
because adaptive listening often allows S-MAC to immediately
send a message to the next hop. However, it does not reach
the shortest latency in the MAC of fully active mode. As
described in Section IV-C, adaptive listen cannot guarantee
the immediate transmission at each hop. If a node sends an
RTS but fails to get a CTS from the intended receiver, it has
to wait for its next cycle. Figure 11 shows that S-MAC with
adaptive listen has about twice the average latency than the
MAC in fully active mode (except the first 1 or 2 hops). We
also observe that for either low-duty-cycle mode, the variance
in latency is much larger than that in the fully active mode,
and it increases with the number of hops. The large variance
is due to the fact that some messages may miss sleep cycles
of certain nodes.

Figure 12 shows the mean message latency on each hop
in the highest traffic load. Again, the low-duty-cycle mode
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Fig. 13. Throughput at each hop under the highest traffic load.

without adaptive listen has the highest latency. With adaptive
listen, the latency is close to that in fully active mode, which
is still about twice on average.

The large difference at the first hop between the two low-
duty-cycle modes (with and without adaptive listen) is due to
the queuing delay on the source node. Without adaptive listen
and transmission, one message is sent in each cycle, so the last
message has to wait for at least 19 cycles. As messages go
further, later hops have less queuing delay. The overall result
is that the low-duty-cycle mode without adaptive listen has a
lower slope than that in Figure 11.

The low-duty-cycle mode with adaptive listen tracks the
slope of the fully active mode, because it is always able to
send data in such a heavy traffic load. This effect also reduces
the variance in latency.

C. Measurement of End-to-End Throughput

Just as S-MAC may increase latency, it may also reduce
the throughput. Therefore we next evaluate throughput in the
same 10-hop network.

We first consider throughput for the highest traffic load,
which is the same as that when measuring the latency in the
highest traffic load. It delivers the maximum possible number
of bytes of data in a unit time. The results do not count any
control packets. Only data packets received at each hop are
counted for the throughput.

Note that there are always data over all 10 hops in the
highest traffic load. Contention happens at each hop, which
can significantly reduce throughput. The measured throughput
on node n represents the (n − 1) hops across the network.
For comparison, we also measured the maximum throughput
without any contention on two nodes in fully active mode, and
the result is 636 byte/s with the same packet length.

Figure 13 shows the throughput measured at each hop across
the linear network in the highest traffic load. As expected,
periodic sleeping reduces throughput. Compared with fully
active mode, the low-duty-cycle modes with adaptive listen
and without adaptive only achieve about 1/2 and 1/8 of the
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Fig. 14. Throughput over 10 hops under different traffic load.

throughput at 10 hops. Throughput is lower because latency
is higher (Figure 12), since sometimes sending is delayed.
Similar to the reduced latency, adaptive listen significantly
improves the end-to-end throughput.

The results also show that, for all MAC variations, through-
put drops as the number of hops increases, due to the RTS/CTS
contention in the multi-hop network.

We next look at the end-to-end throughput in different
traffic load. Figure 14 shows the measured throughput from
the source to the sink for different message inter-arrival time
on the source node. It is from the same data to measure the
energy consumption in Section VII-A.2.

The results show that both the throughput of fully active
mode and that of the adaptive listen mode reduce as traffic load
decreases. When traffic load is very low, they all approach to
that of the non-adaptive mode, because the three MAC modes
spend about the same time to finish transmitting the same
number of messages. Nothing happens during the long time
between two messages. In this case, it is worthless to spend
more energy trying to increase throughput. Since there is not
enough traffic, the throughput cannot be increased.

D. Energy vs. Latency and Throughput

Now we look at the trade-offs that S-MAC has made on
energy, latency and throughput from the above measurement
results to understand if S-MAC succeeds in reducing overall
cost to send a fixed amount of data. On one hand, we know
that S-MAC reduces energy consumption, but this savings may
be offset by decreased throughput.

To evaluate the combined effect of energy consumption and
reduced throughput, we calculate the per-byte cost of energy
and time to pass data from the source to the sink under
different traffic load. The results are shown in Figure 15, which
are obtained by combining data from Figure 9 and Figure 14.

We can see that when traffic load is very heavy (inter-
arrival time less than 1.5s), adaptive listening and the no-
sleep modes both show statistically equivalent performance
that is significantly better than sleeping without adaptive listen.

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

Message inter−arrival period (S)

E
ne

rg
y−

tim
e 

co
st

 p
er

 b
yt

e 
(J

*S
/B

yt
e)

No sleep cycles 

10% duty cycle without
adaptive listen       

10% duty cycle with adaptive listen 

Fig. 15. Energy-time cost per byte on passing data from source to
sink under different traffic load.

In this case, both adaptive listen and no-sleep are almost
always active, while the added delay of non-adaptive sleep
requires extra transmission time and lowers overall energy-
time efficiency.

At lower traffic load, the energy-time cost without sleeping
quickly exceeds the cost of sleep modes (at inter-arrival time
longer than 4s). We believe that the cost of no-sleep mode
grows linearly in the limit, as shown also in Figures 9 and 14.

Adaptive and non-adaptive sleeping become statistically
equivalent at lower traffic load (inter-arrival time at or above
9s). This result indicates that the overhead for adaptive lis-
tening is minimal. The benefits of adaptive listen occur at
moderate to high traffic load.

In summary, periodic sleeping provides excellent energy
performance at light traffic load, but adaptive listening is able
to adjust to traffic and provide energy performance as good
as no-sleep at heavy load. It makes S-MAC with adaptive
listening ideal for sensor networks where traffic is intermittent.

VIII. CONCLUSIONS

This paper presents S-MAC, a medium access control
protocol specifically designed for wireless sensor networks.
Energy efficiency is the primary goal in the protocol design.
Low-duty-cycle operation of each node is achieved by periodic
sleeping. Together with overhearing avoidance and message
passing, S-MAC obtains significant energy savings compared
with 802.11-like protocols without sleeping. It is able to
greatly prolong the network lifetime, which is critical for real
world sensor network applications.

Periodic sleeping increases latency and reduces throughput.
However, adaptive listening largely reduces such cost for
energy savings. It enables each node to adaptively switch mode
according to the traffic in the network.

S-MAC has been implemented on the Mote hardware, and
the source code is freely available to the research community.
Experimental results have verified our design principles.
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