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ABSTRACT
Buildings can achieve energy-e�ciency by using solar passive de-
sign, energy-e�cient structures and materials, or by optimizing
their operational energy use. In each of these areas, e�ciency can
be improved if the physical properties of the building along with
its dynamic behavior can be captured using low-cost embedded
sensor devices. This opens up a new challenge of installing and
maintaining the sensor devices for di�erent types of buildings. In
this article, we propose BuildSense, a sensing framework for �ne-
grained, long-term monitoring of buildings using a mix of physical
and virtual sensors. It not only reduces the deployment and manage-
ment cost of sensors but can also guarantee �ne-grained, accurate
data coverage for long-term use. We evaluate BuildSense using
sensor measurements from two rammed-earth houses that were
custom-designed for a challenging hot-arid climate such that al-
most no arti�cial heating or cooling is used. We demonstrate that
BuildSense can signi�cantly reduce the costs of permanent physical
sensors whilst still achieve �t-for-purpose accuracy and stability.
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1 INTRODUCTION
Residential and commercial buildings account for almost 21% and
18% of total U.S. energy consumption, respectively [20]. This has a
direct impact on greenhouse gas emission, thus on environmental
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health. Emission from the buildings can be reduced either by re-
ducing emissions from the energy supply (e.g., energy generation
through renewable sources) or by reducing energy consumption
through improved building design and lower energy use [20]. A
large body of work aims to make buildings more energy-e�cient
through better utilization of the HVAC [1, 10] and the lighting sys-
tems [8, 17]. These systems depend on continuous data collection
by a large number of sensors and an established physical model of
the buildings.
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Figure 1: Measured (solid line) and modeled (dotted) indoor
temperatures may not agree. Recommended set points for
heating/cooling are in dashed gray in summer/winter.

On the other hand, new building designs and new building mate-
rials are also investigated to reduce energy consumption. How-
ever, there is a lack of scienti�c evidence about the long-term
performance of new building designs in real-world settings [6].
For example, a long term study of the houses built from rammed-
earth showed that the state-of-the-art building models signi�cantly
underestimated performance and subsequent comfort, and thus
over-estimated energy use [3]. Figure 1 shows both measured and
modeled temperature distributions in one bedroom of a rammed-
earth house for one winter and one summer month. The horizontal
gray lines indicate the recommended set points for applying arti-
�cial heating/cooling in summer/winter. If the room temperature
goes above the upper set-point then cooling would be applied or if
below the lower set-point then heating. It is clear from the �gure
that the distribution of modeled (dashed line) and measured (solid
red line) temperatures di�er markedly. That is, the performance of
these buildings is not yet well represented in the building physics
models. For energy rating purposes, a tally is made of the hours
outside a comfortable temperature range. Since the modeled and
actual hours in these temperature ranges di�er signi�cantly, the
predicted energy requirements of the houses will be inaccurate.
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Problem description. With the advent of embedded technolo-
gies, automated data collection using embedded sensor devices
has become mainstream. To understand an indoor space, a trivial
solution would be to deploy sensors at every possible corner of
the indoor space, collect data continuously, and infer the current
conditions at di�erent parts of the space. However, there are two
major problems with this. Firstly, even if the sensor devices become
cheaper, deploying them in large numbers still incurs a signi�cant
cost for purchasing, deployment, and management. Secondly, for
certain locations the permanent installation of physical sensors is
infeasible. For example, head-level temperature sensors would be
inconvenient for residents. Though using energy harvesting and
parsimonious scheduling reduces the maintenance cost of changing
batteries, it neither solves the problem of long-term deployment of
large numbers of sensors nor the problems of tackling sensor fail-
ures or that some sensor positions are not acceptable for building
residents. Thus, a di�erent approach is required that can provide a
�ne-grained, continuous sensor measurement without the cost and
management burden of a large permanent sensor deployment.

Approach. In this article, we aim to reduce the costs of sensor
management by mixing real sensors with virtual sensors, where
virtual sensors are models that can use the readings of one sensor to
predict sensed data at another location even if there is no physical
sensor present. The obvious question is how to create the virtual
sensors and how reliable are they? Our approach comprises a short
training period and a long term operational period. During the
training period, temporary sensors are deployed in the building and
measurements are collected. This data is used to train virtual sensors
that predict the readings of a target sensor using the readings of
the predictor sensor [5, 25]. The selection of predictor sensors is
data driven in that the predictor sensors are not necessarily near
the target sensor and may not even sense the same phenomena.

After the training period, the whole system is analyzed to deter-
mine an optimal mix of physical and virtual sensors to achieve the
purpose of the sensor network. Sensor selection is a multi-objective
optimization problem balancing the accuracy and robustness of the
predictions, with the cost of deployment. During the operational
period, the selected deployed and virtual sensors are used to deliver
data for the application.

The main problem addressed in this article is how to select an
optimal set of physical and virtual sensors for long term monitoring
so that the number (or other costs) of deployed sensors is mini-
mized and the reported values of the sensor network are within
an acceptable error bound for the domain application. This is par-
ticularly important for companies who are selling sensing as a
service. They do not charge their clients based on the number of
devices, rather for the knowledge gained from the gathered data.
If they can meet the application requirement with minimal �xed
hardware that increases their revenue. The main contributions are
summarized in the following.

• We propose a new algorithm for measuring a 3D space
using an optimal mix of physical and virtual sensors for a
building sensor network.

• We evaluate the algorithm using real world building net-
works, demonstrating that there are opportunities for sig-
ni�cantly reducing the complexity of sensor network de-
ployments and the ongoing costs of their maintenance.

• We show that our algorithm is able to maintain accurate
predictions over a long time period of more than a year
using only one month of training data.

2 BACKGROUND
A large body of prevalent works focuses on how to achieve energy-
e�cient buildings. There are two fundamental approaches – (i)
reducing electricity consumption, and (ii) constructing energy-
e�cient building structures. In this section, we discuss the pivotal
role of sensor networks for both of these categories. Since manag-
ing a sensor network is not a trivial task, a number of approaches
are used to enable a sensor network as a simple data collection
tool. We brie�y discuss some of these approaches along with their
limitations as a building monitoring tool.

2.1 Electricity consumption reduction
HVAC and lighting systems are identi�ed as the highest contribu-
tors to the energy consumption in a building [20]. As a signi�cant
proportion of this energy consumption is attributed to ine�cient
usage, there is scope for signi�cant energy saving by using e�cient
means to manage HVAC and lighting units. One of the prominent
approaches is to identify the occupancy of a room and control the
devices accordingly [2, 10].

Though most works focus on identifying occupancy without
deploying a large number of sensors, doing away with any sensors
is not feasible. Another approach is to reduce the over-utilization
of HVAC and lighting systems. This method requires a thorough
understanding of how much usage is su�cient. Personal thermal
comfort deals with this question [12, 21]. Similarly, lighting controls
based on preference have also been studied [11, 26]. However, this
can only be achieved if su�cient data is available to learn personal
comfort and preferences, and ample data is available to assess the
indoor conditions continuously.

2.2 Energy-e�cient buildings
E�ective control of energy in legacy buildings can certainly save
energy. But when constructing new buildings the opportunity exists
to use novel materials and designs to minimize the energy that will
be required for occupants’ comfort [3]. When a new building is
planned, its performance is predicted at the design stage using
building physics models, often supported by simulation software.
Furthermore, many countries mandate energy e�ciency standards
for new buildings, requiring the new designs to be rated for their
energy e�ciency using these models [6]. However, existing models
may not be accurate for novel designs. Thus, in-situ measurements
are important for understanding the performance of novel designs,
and ultimately for enabling e�ective policy on energy-e�cient
buildings.

2.3 WSN as a data collection tool
As sensors are an integral part of energy-e�cient buildings, the goal
of this article is to develop a building monitoring sensor system,
which is economical, easily manageable, and provides accurate,
�ne-grained continuous data. Since the inception of wireless sensor
networks (WSN), a large body of works has focused on �ne-grained
sensing from minimal measurements. Even though the primary
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Table 1: Techniques to infer �ne-grained sensor data from limited measurements.

category general technique limitations
data
estimation

correlation in sensor data is exploited to predict one sensor value
with the help of other

applicable only for short-term estimation

coverage
problem

avoid overlapped-sensing by multiple sensors; use only a subset
of sensors that can cover the whole area (or all the points)

a priori knowledge about the �eld is required
and the statistics should hold true over time

node
scheduling

select only a subset of sensors as active such that the whole mon-
itoring region is covered avoiding overlap by multiple sensors

scheduling can be done only in short burst to
cope with varying dynamics of the �eld

compressed
sensing

exploiting sparsity in the sensed data, recover the whole dataset
from very few samples

a priori knowledge about the �eld is required
and the data should be sparse in certain domain

objectives of these techniques overlap with each other, i.e., energy-
e�ciency and e�cient sensor management, they di�er in terms
of their approach and application scenario. In the following, we
brie�y discuss these techniques by grouping them into four broad
categories. A summary of these techniques is also provided in
Table 1.

Data estimation: As data transmission consumes the most en-
ergy for an embedded sensor device, data estimation techniques are
employed to reduce the amount of data transmission, thus energy
consumption [9, 14, 23, 24]. They are also used to tackle missing
sensor data, node failure, communication failure, etc.

Coverage problem: In many wireless sensor networks, there
are more nodes than the optimal requirement. The reasons can be
non-overlapping of the sensing range and the transmission range,
infeasibility of careful deployment, tackling node failure, etc. This
leads to redundant sensor nodes in the network. The coverage
problem selects a subset of active nodes (post deployment) that are
su�cient to cover the whole area while ensuring connectivity [4,
19]. The subset of active nodes are changed periodically such that
there is balanced energy expenditure by the nodes.

Node scheduling: Node scheduling is similar to the coverage
problem, where the data from a subset of deployed nodes are suf-
�cient. However, here the active node selection is not only based
on coverage criteria, but it can be based on spatial and/or temporal
correlation among the nodes [15, 25, 28].

Compressed sensing: This is another technique that reduces
the amount of tra�c within the network. If the sensor data is
sparse in some domain then using the compressed sensing tech-
nique sensor data of all the sources can be reconstructed while the
measurement is done from a few sources [18, 27, 29].

2.4 Research gap analysis
It is evident that sensor-based data collection is an essential require-
ment for buildings to achieve energy-e�ciency. However, most of
the existing sensor network optimization techniques are applied at
the post-deployment stage to minimize the use of deployed sensors.
Though there are pre-deployment strategies for selecting a limited
number of sensors [16, 22], they are most suitable for outdoor sce-
narios where statistics of the �eld is known a priori. In this work,
we focus on a pre-deployment strategy for monitoring in buildings
where the statistics of the �eld is not well known. We develop a
method for �ne-grained continuous data collection using only a
minimal set of sensors (post-deployment).

3 BUILDSENSE FRAMEWORK
In this work, we present BuildSense, a framework for monitoring in-
door spaces. The objective of the framework is to create and manage
a sensor network for supporting energy-e�cient buildings. Key fea-
tures of BuildSense include optimal deployment strategy, low-cost
and fault-tolerant deployment, ease of management, building-level
customization, �ne-grained and continuous data collection, robust
and accurate sensor data. To attain all these features simultaneously,
a number of design choices are made and accordingly algorithms
are developed.

3.1 Design principles
At the core of its design, BuildSense needs to ensure that accu-
rate, �ne-grained, continuous sensor data is available. Additionally,
its goal is to reduce the deployment and management cost of a
large number of sensor devices. To ful�ll these two divergent re-
quirements, BuildSense uses an optimal mix of physical and virtual
sensors, where virtual sensors use a prediction model that can pre-
dict sensor data accurately with the help of other physical sensors.
The number of physical sensors is kept as low as possible, which
leads to reduced costs. In this way, the use of virtual sensors ensures
�ne-grain measurement with a minimal sensor infrastructure. How-
ever, solving this problem raises a number of rudimentary questions
– (a) how to create a virtual sensor? (b) how many physical sensors
are required to ensure su�cient granularity in the data? (c) how to
ensure the accuracy of the reported data over a long time period of
months or years? BuildSense follows a sense-learn-predict model
that can tackle these questions.

3.2 System Model
The BuildSense framework does not assume any special system
model and can be integrated into any sensor network. In other
words, it inherently supports easy customization for any building.
The framework works in three phases – (i) data gathering, (ii)
training, and (iii) operation, which not only allows building-level
customization but also helps to tackle the rudimentary questions
mentioned before. Figure 2 shows how the three phases constitute
the framework.

During the gathering phase, a large number of sensors are
deployed in the building. This temporary network collects data for
a period of a few weeks or months where all the sensors report their
values to a central node, called the sink node. This dense sensor
deployment during the data gathering phase helps to understand
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Figure 2: The three phases of the BuildSense framework.

the characteristics of the building and helps to ensure long term
sensor data accuracy using minimal infrastructure. As mentioned
earlier, the goal of BuildSense is to keep the number of permanent
sensors as low as possible without violating the other constraints.
As a result, a large number of sensors are removed after the data
gathering phase and only a few remaining sensors become the
permanent infrastructure.

The training phase commences either after su�cient data has
been gathered or the data gathering and training phases can over-
lap (Figure 2). Various learning operations are performed during
the training phase by utilizing the gathered data (details are in
Section 4). When the learning functions attain a prede�ned level of
con�dence, the training phase, as well as the data gathering phase,
are �nished. Three tasks are performed during the training phase.
T1. The �rst task is to learn prediction models for the virtual sen-
sors in which the readings of a physical sensor are used to predict
the readings of a virtual sensor. Sensor models are learned o�ine.
T2. The second task is to select the best sensor types and positions
for long term measurement, to achieve high prediction accuracy at
a low infrastructure cost. T3. The third task is to adjust the selection
of physical sensors to optimize fault-tolerance and the long-term
stability of predictions.

Once the training phase �nishes, the operational phase kicks
in. The temporary sensors are removed along with some of the semi-
permanent sensors; the rest become the permanent physical sensors.
Selection of permanent sensors from amongst the semi-permanent
sensors is discussed in detail in the next section. During operation,
measurement commences using the physical (permanent) sensors
and virtual sensor models are used to predict virtual sensor values.

4 LEARNING IN BUILDSENSE
BuildSense has three learning steps corresponding to each of the
tasks. This section describes the algorithms for each of the learning
steps as mentioned in Section 3. Before jumping into the algorithms,
let us formalize the problem statement.

4.1 Problem Statement
Suppose, we have a set of sensed phenomena S = {s1, . . . , sn }, each
a time-series of observations so that si (t) ∈ R for timestamp t .
Each sensor has a cost ci re�ecting its purchase, installation, and
maintenance costs. More simply, costs can be binary for each sensor,
i.e., whether to deploy permanently or not. There is an upper bound,
cost_max, on the total allowed cost for a system.

If a sensor si can be estimated during a time period T by a
predictor function pi j (sj ) within some error bound ϵ , so that ∀t ∈
T , si (t) = pi j (sj (t)) ± ϵ then we say that si and sj are ϵ-neighbors
or pi j has accuracy ϵ over time period T , written si ≈ sj on T .

We use P ⊆ S to refer to a set of permanent sensors and V =
S \ P the virtual sensors. Special permanent sensorsW ⊆ P , called
sentinels, are used to assess the stability of predictions. Stability
is the percentage of time periods (e.g., months) during long term
operation (e.g., years) for which predictions are su�ciently accurate.
The lower bound (%) for stability is min_stability. For time period
Y = {T1, . . . ,TM } and sentinelsW ⊆ P , we de�ne the proportion
of time periods for which predictions are stable by:

is_stable(si , P ,Y ) = ΣMk=1(∃ sj ∈ P \ si | si ≈ sj on Tk ) /M .

Then, the problem we address is the following. Given training
data from sensors S = {s1, . . . , sn }, �nd a set P ⊆ S of permanent
sensors and V = S \ P of virtual sensors and sentinelsW ⊆ P so
that

(1) There is a su�ciently accurate prediction function for
every virtual sensor based on a training period T , i.e.,

∀si ∈ V , ∃ sj ∈ P . si ≈ sj on T .

(2) The total cost of permanent sensors is bounded, i.e.,

Σsj ∈P c j ≤ cost_max .

(3) Predictions are stable during long term operation of the
network for all sentinel sensors inW , i.e.,

∀s ∈W , is_stable(s, P ,Y ) ≥ min_stability.

4.2 Learning Virtual Sensors
The �rst task is to learn predictors for the virtual sensors. Algo-
rithm 1 gives the pseudo code for this process. Given a �eld of
sensors S = {s1, . . . , sn } that have gathered data during a time
period T , the goal is to learn predictor functions for each pair of
sensors si , sj so that the predicted value of si using the current read-
ing of sj is within an error bound ϵ of the actual value ( si ≈ sj ).

Four predictor functions were investigated in detail in [5]: simple
nearest neighbor, linear regression, cubic on the time of day [13],
and nearest hour of day neighbor. Of these, the nearest hour of
day predictor had the best performance. The nearest hour of day
predictor uses a time of day adjustment for each hour of the day. An
o�set oh for each hour of day h ∈ {0, 1, . . . , 23} is de�ned by oh =
mean{si (t) − sj (t) | t .h = h} where t .h is the hour of day at time t .
The predictor function for si is given by pi j (si ) =def λt . sj (t)+ot .h
and we write sj + o for this function.

Figure 3 illustrates how the nearest hour of day prediction works.
The black lines show the readings for two sensors, s1 and s2, during
a training period: s1 is in a bedroom and s2 is embedded in the wall
of a di�erent room. The red line in the lower part of the �gure
shows the learned hour of day o�set function o for this sensor pair.
The o�set function has an amplitude of 1.4 ° C and it minimizes
the error: s1 − (s2 + o). This simple additive estimator turns out to
be surprisingly e�ective. For this example, which includes some
strong context changes in the weather, the root mean squared error
(RMSE) for s1−(s2+o) is 1.15° C over one month. This is su�ciently
accurate for applications such as energy rating or HVAC control.
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Figure 3: Sensor readings from a bedroom (dotted) and em-
bedded in a wall (black) and their average di�erence by time
of day (red).

Phenomena such as relative humidity can also be predicted, with
RMSE of 2% to 4% [5].

Algorithm 1 generates hour of day o�sets and RMSEs for every
possible pair of sensors si and sj . Lines 3 to 6 calculate the hour of
day o�set function, giving a virtual sensor estimator for si based
on sj . The error of this predictor is the RMSE of the residuals be-
tween the actual and estimated values for si (lines 7 and 8) using
root-mean-squared error (RMSE) as the error statistic. The estima-
tion errors are used in the sensor selection phase to optimize the
selection of virtual sensors. Line 9 records the learned hour of day
o�set function for a sensor pair. Since this predictor is additive, the
o�set for sensor si using sj is simply the negative of the o�set for
sj using si .
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Figure 4: O�set vectors for nearest hour of day predictors
(left) and CDF of the absolute error for these predictors
(right).

Figure 4 (left) shows the set of o�set vectors learned for 17 sensor
pairs. It can be seen that o�set values range from -1 to 3° C and that
the diurnal shapes vary. The �exibility of the hour of day o�set
model allows more control than models such as nearest neighbor,
or linear or cubic regression [5, 13]. CDFs of the absolute value of
residuals are shown in Figure 4 (right). A few sensors pairs have

Algorithm 1: Learn a predictor for each sensor pair.
Input :S = {s1, . . . , sn } set of sensors

T training period
Output :E matrix of prediction errors for each sensor pair

F prediction function parameters
Variables :p predictor sensor

d di�erences between sensor readings
o vector of learned hourly o�sets
v virtual sensor to be predicted
r residuals between actual and predicted values

1 for i ∈ 1 : n do
2 for j ∈ (i + 1) : n do
3 p(T ) = sj (T )
4 d(T ) = si (T ) − sj (T )
5 o = 〈h0 . . .h23〉 �tted from d

6 v(T ) = p(T ) + o
7 r (T ) = v(T ) − si (T )
8 E[i, j] = RMSE(r (T )); E[j, i] = E[i, j]
9 F (i, j) = o; F (j, i) = −1 × o

10 return E, F

100% of their residuals below 1° C. In this sample, all virtual sensors
have 90% of their observations within 1.5° C of the true value.

4.3 Sensor Selection
During the sensor selection phase, two measures are considered
– cost and accuracy. Algorithm 2 gives the pseudo code for the
selection process. It chooses a set of permanent sensors P ⊂ S
so that all the virtual sensors V = S \ P can be estimated with
acceptable accuracy and total cost < max_cost. This is a version of
the set cover problem, which is known to be an NP-hard problem [7].
However, there exists polynomial time greedy algorithm that works
as follows.

Let P be a set of predictor sensors andC the pool of candidate
sensors for a sensor network S . Initially P = ∅ and C = S = U (line
1 of Algorithm 2). OrC can be restricted as will be explained shortly.
For each iteration, we chose a sensor s ∈ C that covers (i.e., able to
predict) the highest number of yet to covered sensors (line 3). Add
this chosen s to the set of permanent sensors and remove s and its
ϵ-neighbors from the sets of candidate and uncovered sensors (lines
4 to 7). Finally, record the predictor function for each of permanent
sensors’ virtual neighbors (lines 8 to 9). Repeat the sensor selection
steps until all candidate sensors are exhausted, i.e., C = ∅. Since
every sensor can, at worst, predict itself, Algorithm 1 will always
terminate. The algorithm returns P the set of permanent sensors to
be deployed and the virtual sensors are V = S \ P with predictors
recorded in FV .

The algorithm may fail to meet our requirements in two ways:
the cost of permanent sensors may be too high, or it may not be
possible to cover all sensors. First, we consider the cost failure
case. Each sensor si has a usage cost ci . This cost can take into
account the purchase price, installation, and maintenance of that
sensor. If all costs are the same for every sensor, then the algorithms
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Algorithm 2: Select virtual and permanent sensors.
Input :S,E, F from Algorithm 1

PX ⊂ S (optional) temporary-only sensors
c : S → N permanency cost for each sensor
ϵ bound for predictor errors
cost_max bound for permanent sensor costs

Output :V ⊆ S virtual sensors
P ⊆ S permanent, physical sensors
FV ⊆ F chosen predictor functions
cost ∈ N total cost of permanent sensors

Variables :C candidate sensors for permanency
U undecided sensors
R virtual sensors predicted by the latest s ∈ P

1 V = ∅; P = ∅; C = S \ PX ; U = S

2 while C , ∅ do
3 si =maxsi ∈C {size ({sj | E[i, j] < ϵ} ∩U ) }
4 P = P ∪ {si }
5 R = { sj | E[i, j] < ϵ} ∩U }
6 U = U \ R
7 C = C \ R
8 for r ∈ R do
9 FV = FV ∪ {F (r , s)}}

10 if U , ∅ then
11 Warning: Cannot cover all sensors in S .
12 cost = 0;
13 for s ∈ P do
14 cost = cost + c(s)
15 if cost > cost_max then
16 Warning: Cost of permanent sensors is too high.
17 V = S \ P ;
18 return P ,V , FV , cost

simply minimize the number of permanent sensors. The sensor
selection process takes account of high-cost sensors by allowing
for an optional set PX ⊂ S , which is a set of temporary sensors
that are too costly to deploy or maintain permanently. Such sensors
are excluded from the candidates for permanency by initializing
C = S \ PX (line 1). Algorithm 1 returns the total cost of the
deployment, that is the sum of the costs of sensors in P . It also gives
a warning if the cost is too high (lines 15 to 16). The user can then
increase ϵ or make more sensors available and rerun the algorithm
to reduce the total cost. A topic for future work is to integrate cost
considerations into the greedy selection of permanent sensors (line
3). This would require a utility function to balance the cost of a
proposed permanent sensor against its coverage of virtual sensors.
The task of evaluating di�erent utility functions, and extension of
the standard greedy set cover algorithm is beyond the scope of this
article and is left to future work.

Second, we consider the problem of incomplete coverage. When
all sensors can be used as permanent sensors, then the algorithm
always terminates with complete coverage. This is because in the
worst case every sensor can predict itself and so will eventually be
added to P . However, when some sensors are excluded as permanent

sensors, then it may not be possible to �nd a predictor for every
sensor. In this case, the loop will terminate with U non-empty,
and the user is given a warning (lines 10-11). There are several
solutions for this problem. The unpredictable high-cost sensors can
be included in the deployment anyway (reduce PX ), or additional
low-cost sensors can be deployed (increase S) or ϵ can be increased
so they have more chance to be predicted by an existing physical
sensor.

4.4 Fault-Tolerance and Stability
Algorithms 1 and 2 �nd a minimal set of physical sensors that
covers the whole sensor �eld for a given error bound. However, a
disadvantage is that the resulting network may not be fault-tolerant
since virtual sensors may have only one predictor. Such sensors
have no redundancy to allow for sensor failure. So if a physical
sensor fails then the readings of all the virtual sensors it predicts
are also lost. We now modify the selection algorithm to improve
fault tolerance for a small cost increase of one physical sensor.

First, select P andV using Algorithm 2 and call these sets P0 and
V0. SelectW ⊆ V0 as the set of virtual sensors that are predicted by
only one permanent sensor.

W = {w ∈ V0 | size {p ∈ P0 | E[w,p] < ϵ} = 1}.

Virtual sensors with only one predictor are the most vulnerable
from a fault-tolerance viewpoint. Choose one virtual sensor si ∈W
to become permanent. This should be the sensor whose predictions
provide the best additional coverage of vulnerable virtual sensors.

si =maxsi ∈W {size ({sj | E[i, j] < ϵ} ∩W ) }.

The �nal result is a new sensor partition with P1 = P0 ∪ {si } and
V1 = V0 \ {si }. This process can be repeated to strengthen the fault
tolerance of the virtual sensing system.

Stability is the ability of a system to maintain the accuracy of
virtual sensors during long term operation. One reason for inaccu-
rate predictions in the long term is because the context governing
the measured phenomena has changed. For example, the perfor-
mance of buildings is a�ected by seasonal changes in the weather.
The other main reason for inaccurate predictions is ad hoc human
actions. Human-caused changes could be passive e�ects of how
the building is used (e.g. air �ow and the number of residents) or
unusual uses of arti�cial heating or cooling. They tend to be short
term, and they are generally not predictable.

One advantage of our cross-correlation algorithm for learning
virtual sensors is that when the context changes then both predictor
and virtual sensor are likely a�ected and so the predictor will still
be accurate. However, since context changes are, by de�nition, not
always predictable in advance, BuildSense also needs to monitor
the stability of virtual sensors in the long term.

BuildSense addresses this problem by monitoring the stability
of its predictors during the operational phase. Selected permanent
sensors, called sentinels, can be mirrored by other permanent
sensors that can predict their values.

sentinels(W ) =W ⊂ P ∧ ∀si ∈W .∃ sj ∈ P \W . si ≈ sj .

Typically a permanent sensor set will yield several sentinels. Alter-
natively, additional permanent sensors can be added to increase the
number of sentinels using a similar approach to the fault tolerance
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algorithm described above. Since both predicted and actual values
are available for the sentinels, estimation errors can be monitored
during operation. If the error for one or more sentinels drifts above a
given bound for more than a few days, then the user can be warned
that con�dence in the virtual sensor predictions is low. The user
may decide to trigger retraining with existing data to learn new
predictors and o�set functions. Additionally, but optionally, some
temporary sensors may be redeployed and more data is gathered
before the system is retrained. Alternatively, periods with high
prediction error may be labeled as anomalous and this data sim-
ply treated with lower con�dence. For example, one-o� occupancy
events such as heating peaks can be treated as anomalies that need
not trigger retraining, while longer term changes caused by, for ex-
ample, a change in the occupants of the house, can be addressed by
triggering a retraining period, with or without gathering additional
training data.

5 EVALUATION
The goal of BuildSense is to set up an easily manageable sensor
infrastructure for any energy-e�cient building. It advocates for
a sensor network with minimal sensor deployment, yet supports
a �ne-grained data acquisition with high accuracy. To validate
the framework, we address the following questions using the data
collected from two real-world building monitoring networks.

Accuracy: How to ensure �ne-grain data collection with the
desired level of accuracy even if there is a sparse sensor deployment?
Are the virtual sensor prediction functions of good quality?

Cost: What levels of cost saving are possible? Does the algorithm
�nd optimal low-cost monitoring solutions?

Robustness: Is the network fault-tolerant to the failure of phys-
ical sensors? Are accurate predictions maintained for long opera-
tional periods?

Before evaluating BuildSense with respect to these performance
criteria, let us �rst describe brie�y the datasets that are used for
the performance measurements.

5.1 Data Set
BuildSense is evaluated using data from two sensor networks that
monitor energy-e�cient rammed earth houses in the hot-arid cli-
mate of Kalgoorlie in Western Australia’s gold�elds [3]. The pur-
pose of these networks is to investigate to what extent adopting
passive solar design principles can reduce dependence on arti�-
cial climate control. The two single-�oor houses have identical
design and orientation, but one was built with the traditional solid
rammed-earth walls (monolithic) and the other with an insulating
polystyrene core into the walls (insulated).

The heterogeneous monitoring networks include commercial
sensors for temperature and relative humidity, bespoke sensors
including temperature sensor pro�lers embedded in the walls of
the buildings, temporary sensors that could be deployed only while
the buildings were unoccupied, a local weather station and public
data from the nearest Bureau of Meteorology weather station. Fig-
ure 5 shows the �oor plan and the placement of sensors in each
of the houses, where KIT, LIV, BW, BS, BE refer to the Kitchen,
Living Room, and Bedrooms West, South and East, respectively.
The WASHING area comprises a toilet, bathroom, and laundry. The
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Figure 5: House plan and sensor placements for both the
monolithic and insulated houses. See the text for an expla-
nation of the sensor labels.

environs of the houses are instrumented with over 150 sensors.
For each house, as shown in Figure 5, M1 to M4 each indicates
pro�lers of 8 temperature sensors embedded within the rammed
earth walls, and H1 to H6 indicate additional temperature sensors
embedded in the walls. A1 to A5 are temperature and humidity
sensors at ceiling height. In addition, A1 to A5 indicate the posi-
tions of 20 temporary head-level temperature and humidity sensors
that were deployed before the building was occupied. Moreover, a
weather station with 5 sensors is placed between the two houses.
The monitoring sensor networks have been running continuously
since September 2014 and the data has been made publicly available
for future analyses [3].

For evaluation purposes, we partitioned the data into periods
of one month for each house. Each month can be used either for
training or testing. Both buildings were monitored but unoccupied
from September to November 2014. The houses were each occupied
by a family from December 2014 to June 2016. The number of
active sensors varied slightly from month to month because – (a) a
group of temporary head-level sensors was only available during
the unoccupied period, and (b) communication errors or power
failure caused some sensor streams to be lost for periods up to a
few weeks. We used data only for those months where at least 60%
of the sensors had su�cient data for training. The sensing intervals
range from 5 minutes to 30 minutes. Linear interpolation was used
to �ll in up to 4 hours of missing values. Half hourly observations
were then selected from each sensor stream, giving approximately
1440 observations per sensor per month.

5.2 Accuracy
BuildSense o�ers �ne-grained sensing with minimal infrastructure
with the help of virtual sensors, where virtual sensors are simply
prediction models that replace physical sensors. Thus, the usabil-
ity of BuildSense depends on the accuracy of the virtual sensor
prediction models.

The prediction model used in BuildSense is a simple regression
model in which the �nal virtual sensor readings are calculated by
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adding a per-hour o�set to the predicted value. The hourly o�sets
used for virtual sensors are determined by a least squares approach
that �ts a model to the training data. Root mean squared error
(RMSE) is used to specify the accuracy of a particular model as
well as choosing the best model from available models. Despite
being a simple model it is e�ective even for long term operation
as demonstrated by the low overall RMSE values in Figure 6, and
low per-month RMSEs in Figure 8. This section investigates the
properties of BuildSense that contribute to its accuracy.

Consider a predictor sensor p for sensor s and a learned o�set o
so that the virtual sensor v is de�ned by v = p + o∗, where o∗ maps
the correct hourly o�set at each point in the sequence. The sequence
has lengthn. The residual r is a time series of the di�erence between
the predicted and observed values for the virtual sensor: r = v − s .

The quality of the virtual sensor models is evaluated using the
following standard metrics for the quality of regression models.

RMSE:
√
Σ(r × r )/n. The RMSE should be as small as possible.

Homoscedasticity: The variance around the regression line
should be the same for all values of the prediction variable. This
can be measured by �rst partitioning the residuals into groups for
each value of the prediction variable (e.g. to the nearest degree)
and calculating the interquartile range (IQR) for each group. Ho-
moscedasticity is measured by the standard deviation of these IQRs.
Its value should be as close to 0 as possible.

Residual mean: Σ r/n. The mean of the residuals should be as
close to 0 as possible.

Correlation: cor (r ,p). This measures the correlation between
the physical sensor values and the residuals from the virtual sensor.
Weak correlation indicates that the virtual sensor model is inde-
pendent of the underlying context, whereas a strong correlation
between these measures indicates that the model may be missing
some parameter. We measure correlation using the pairwise Spear-
man correlation coe�cient which ranges from -1 to 1. Values close
to 0 indicate the weak correlation we desire.

Auto-correlation: represents recurring patterns in the residu-
als related to the time of observations. This can be calculated by
grouping the residuals according to the hour of the day, calculating
the interquartile range (IQR) and taking the standard deviation of
the IQRs.

In order to investigate the quality of BuildSense prediction mod-
els, we investigate the performance of 17 virtual sensor pairs for
the monolithic house with training data from the months of Oc-
tober and April combined. Virtual sensors are selected using an
ϵ-neighborhood of 1.0° C: that is, all sensors that can be predicted
with an error no more than 1 degree. We analyze readings from
the complete data set of 22 months. Since there is missing data in
this real world data set, the number of points with both estimated
and actual data available ranges from 23,795 observations for the
in-wall sensors to 3,708 observations for the �ve head-level sensors
that could only be deployed before the houses were occupied. The
remaining 12 sensor pairs have at least 16,616 points each.

Figure 6 shows the resulting quality metrics for each virtual
sensor pair. The units are ° C for all metrics except the correlation
coe�cient, which is on the scale [−1, 1]. Sensor pairs were selected
for RMSE ≤ 1.0° C in the training data. It can be seen that for all
but one pair, the RMSE for the full data set of nearly 2 years is also

RMSE Homoscedasticity Residual Mean Correlation Auto−Correlation

−
0.

5
0.

0
0.

5
1.

0

Figure 6: Virtual sensor residuals for 18 months.

within this limit. The variance around the regression line is close to
0 for all virtual sensor pairs as is the mean residual. Similarly, there
is no signi�cant bias of the residuals at di�erent hours of the day.
These metrics indicate that virtual sensor pairs remain accurate
during long term operation. The correlation metric is somewhat
surprising. Although the mean correlation coe�cient is 0.0147 for
all sensor pairs, there is high variance. The upper and lower quar-
tiles are -0.223 and 0.445 respectively. That suggests that for many
sensor pairs, as the temperature increases, the prediction error also
rises. We considered whether this was because of the inclusion of
some anomalous months. But running the same analysis with those
months removed did not change the correlation results appreciably.
We conclude that although there is some correlation between tem-
perature and virtual sensor residuals, it does not adversely a�ect
the overall accuracy of the system.

5.3 Cost
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Figure 7: Number of ϵ-neighbors per sensor.

In this section, we evaluate how practical virtual sensing is in
real-world scenarios by investigating the scope for replacing physi-
cal sensors with virtual ones. The size of sensors’ ϵ-neighborhoods
determines the scope for e�ective virtual sensing. Figure 7 shows
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the distribution of the size of sensor neighborhoods under di�erent
error bounds. As expected, higher error tolerance results in larger
neighborhoods for more nodes, and so the scope for virtual sensing
increases. Depending on the application, users can decide the ap-
propriate balance between the number of physical sensors and the
accuracy of the the virtual sensor predictions. For example, Figure 7
demonstrates that for an error bound of 1 degree (green line) 50%
of the sensors have 16 sensors in their ϵ = 1 neighborhood.

Table 2: Number of virtual sensors under di�ering selection
criteria.

Number of Virtual Sensors
All VS P0 P1

Error Mono Ins Mono Ins Mono Ins
°C N=24 N=25 N=24 N=25 N=24 N=25
0.5 54% 44% 33% 20% 38% 16%
1.0 71% 64% 0% 4% 54% 52%
2.0 71% 68% 0% 4% 67% 64%
3.0 75% 72% 25% 48% 67% 64%

Next, we evaluate how this works out in the selection of physical
sensors. The choice of cost and accuracy parameters for sensor
selection determines the number of virtual sensors that can be
predicted. Table 2 gives the total costs of BuildSense networks
under di�erent selection criteria. Here we use a simple binary cost
function of 1=permanent, 0=virtual. Column All VS shows the
number of virtual sensors (as a percentage of all sensors) for two
houses and error bounds from 0.5 to 3.0°C. Overall, for a realistic
error requirement of 1.0° C, we achieved cost savings of 64% to 71%
of deployed sensors in the two houses.

5.4 Robustness
Column P0 of Table 2 shows the percentage of sensors that are fault-
tolerant under the base selection algorithm. That is the number
of sensors with more than one physical sensor as a predictor. The
worst fault-tolerance occurs for the higher error bounds because
they have larger neighborhoods and so a single physical sensor is
typically able to predict most of the remaining sensors. To address
this problem, we add an extra step, which selects one additional
physical sensor in order to increase the predictor coverage of vir-
tual sensors. Column P1 of Table 2 shows that, for this additional
cost of one extra physical sensor, we can signi�cantly improve the
proportion of fault-tolerant virtual sensors. For example, for error
bound 1.0, the number of fault-tolerant sensors increases from 4%
to 52%.

Next, we deal with the last question, i.e., what is the stability of
the system in long run. In order to test stability, we choose October
2014 as training data and predict sensor values for the following 15
months of operation. The residuals between actual and predicted
values in each month are recorded for each pair. Figure 8 shows the
stability of predictions (RMSEs) per-month over the operational
period for two virtual sensors and a sentinel selected from the
training data. It can be seen that accuracy is not adversely a�ected
by seasonal changes, which shows that the co-correlation model for
virtual sensors works well. We conclude that, for this application,
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Figure 8: Stability of two virtual sensors and one sentinel as
per-month RMSE over 14 months.

a training period of one month is su�cient for stable long term
predictions with no need for retraining. However, the requirements
for retraining depend strongly on the application. If the application
context changes markedly or its accuracy requirements are very
high, then users can opt for retraining. A third party can provide
this service.

To summarize the results observed from the long term operation,
the learned virtual sensor predictors are stable for more than one
year of operations. There is one month (July) with errors ≥2° C
and three months (June to August) ≥1.5° C, giving a stability ratio
> 80%. In July and August (Australian Winter) there is a marked
increase in prediction error. This is believed to be caused by the
use of stand-alone electric heaters by the occupants, which is an ad
hoc behavior that can not be predicted in advance. However, the
sentinel clearly tracks this anomalous behavior. So sentinels can
also serve as anomaly alarms.

6 CONCLUSION
Continuous, long-term, �ne-grained, monitoring of buildings is
essential for many approaches to energy-e�ciency. Although de-
ploying a large number of sensors throughout the building can
provide an easy solution, it incurs a huge deployment and manage-
ment cost. In this work, we propose BuildSense, a framework that
enables continuous and �ne-grained monitoring of a building with
minimal sensor infrastructure. In many (typical) sensor networks,
optimal sensor deployment may not be feasible due to inaccessi-
bility of the monitoring �eld or lack of statistical knowledge of it.
On the other hand, buildings o�er an accessible and well-planned
environment. However, they di�er signi�cantly from each other.
Thus, planning an optimal and customized (at building-level) sen-
sor deployment becomes a non-trivial task. Though we have used
the datasets from two building monitoring networks of a special
kind, the data itself does not contain any special characteristics. In
other words, the dataset is su�ciently generic to maintain a generic
evaluation of our framework. This ensures that BuildSense can be
used for any building. Customization by building-speci�c physical
sensor selection can be applied without any customization in the
algorithm.

BuildSense uses a sense-learn-predict approach for customized
sensor deployments. A large number of temporary or semi-permanent
sensors are deployed during the learning phase. For the operational
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phase, the majority of these sensors are removed and a minimal
number of sensors are selected for permanent monitoring. Using a
mix of physical and virtual sensors, BuildSense ensures granular
and continuous sensor data with su�ciently high accuracy and cost
within a given budget. Overall, for a realistic error requirement of
1.0° C, we achieved cost savings of 64% and 71% of the deployed
sensors in the two houses. On the other hand, for the more stringent
accuracy requirements of 0.5 degree RMSE, a reduction of 44% and
54% of physical sensors can be achieved. We have also demonstrated
that accurate and stable predictions can be maintained for over one
year of operations.

There are several interesting avenues for future work. In this
article, we used a simple binary cost function and a standard greedy
set cover algorithm, but it would be interesting to experiment with
di�erent types of cost functions and study their e�ect on the op-
timal selection of virtual sensors. This scenario would inform im-
provements of the sensor selection algorithm. Another area for
investigation would be incorporating convenience and trustwor-
thiness into the selection criteria for virtual sensors. Small and
unobtrusive sensors tend to be cheaper but also less accurate and
reliable than more expensive sensors. Maybe using a set of small
sensors could mask failures and so provide su�ciently accurate
prediction at a lower cost than some expensive sensors. BuildSense
has proved e�ective for temperature and humidity but further work
is needed to assess its applicability for other sensed phenomena.
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