CI TECHNOLOGIES

CITS4404
Artificial Intelligence & Adaptive Systems
Key technologies

• Evolutionary algorithms
• Particle swarm optimisation
• Ant colony optimisation
• Artificial neural networks
• Learning classifier systems
• Fuzzy reasoning
• Market-based algorithms
• Bayesian reasoning
• Artificial immune systems
Evolutionary algorithms

- Based on the principle of evolution by natural selection
- The algorithm maintains a population of **encodings**
 - The structure of an encoding captures what the algorithm is allowed to vary in its search for a good solution
- Each encoding represents a solution
- Each solution has a corresponding **fitness** that describes how good that solution is
- In each **generation**
 - The fitnesses are used to decide which solutions **survive**
 - The survivors become **parents** and they spawn new encodings, generated via **mutation** and **crossover**
 - The **children** also represent solutions with fitnesses…
EAs contd.

- Note that an encoding/solution, once created, never changes
 - Its descendants will be different
- The general idea is that good solutions generate “similar” solutions, some of which may be an improvement
 - Parents generate children either singly or in combination
- The initial population is generated either randomly, or using some domain knowledge
- Termination can be determined in several ways
 - A fixed number of generations
 - Until improvement ceases
 - Until a certain fitness is obtained
Particle swarm optimisation

- Based on the behaviour of a flock of birds searching for food
- The algorithm maintains a population of particles
- Each particle moves continually over the landscape
 - At any moment, each particle has a position, representing a solution; and a velocity, representing its momentum
- Each particle remembers the best solution it has ever seen, its personal best pbest
 - The algorithm also remembers the global best gbest
- In each generation
 - Each particle’s velocity is updated, favouring pbest and gbest
 - Each particle’s position is updated using its new velocity
 - The pbests and gbest are updated as appropriate
• Population dimension = 4
• Delay between iterations = 500
PSO contd.

• Each particle explores different solutions in different generations
 • Collectively the swarm explores the landscape
• The updating mechanisms mean that particles favour areas of the landscape known to have good solutions
 • Good solutions the particle has seen
 • Good solutions other particles have seen
• As time proceeds, the swarm focuses on a smaller and smaller area
 • Eventually, the swarm will converge on the area surrounding $gbest$
Ant colony optimisation

• Based on groups of ants communicating via pheromones
• Given a problem structured as a network, the algorithm maintains a population of ants that traverse the network
• An ant selects each step through the network probabilistically
 • It will favour “good” steps
 • It will favour steps with more pheromone
• When an ant completes a traversal, it lays pheromone on the path that it used
 • The amount of pheromone laid will be proportional to the quality of the path
• Pheromone evaporates over time, to allow for adaptation in the steps selected
ACO contd.

• The key points are that
 • When one ant discovers something good, every ant benefits
 • Initially-random choices improve over time
• ACO applies naturally to problems involving spatial networks
 • Travelling salesman
 • Vehicle routing
 • Electronic messaging
 • etc.
• But many other problems can be cast as networks
 • Scheduling
 • Timetabling
 • Image processing
 • etc.
Artificial neural networks

- Based on the structure of the brain and its processing ability
- ANNs act mainly as
 - Function approximators
 - Pattern recognisers
- An ANN is composed of one or more layers of neurons
 - Each neuron is very simple
 - Power and intelligence emerges from their (usually vast!) numbers, and from the interconnections between them
- Data is fed into one end of the network (the input layer), it passes through the hidden layers of the network, and it emerges from the output layer
 - The various layers generate progressively higher-level information
\[a_i = g \left(\sum_{j=0}^{n} W_{j, i} \cdot a_j \right) \]
ANNs contd.

- The number of hidden layers required is determined by the complexity of the problem being solved
 - Zero hidden layers – can represent only linearly-separable functions
 - One hidden layer – can represent any continuous function
 - Multiple hidden layers – can represent any function

- ANNs can be
 - Acyclic (feed-forward) – stateless processing
 - Cyclic (recurrent) – supports short-term memory

- ANNs learn by fine-tuning the weights on their links, usually by one of two mechanisms
 - Back-propagation
 - Evolution or similar
Learning classifier systems

- Based on how “experts” solve problems and acquire skills
- The algorithm maintains a database of “condition-action-prediction” rules
 - The condition defines when the rule applies
 - The action states what the system should do
 - The prediction indicates the expected reward
- Given a problem instance, the algorithm
 - Forms a match set of rules whose conditions are satisfied
 - Chooses the action A with the best predicted performance
 - Forms the action set of rules that recommend A
 - Executes A and observes the actual performance, which is fed back to update the action set
updated periodically by evolution, covering, and subsumption

(Diagram adapted from a seminar on using LCSs for fraud detection, by M. Behdad)
LCS contd.

- As well as direct feedback, the rule set is periodically updated
 - By subsumption, generalisation, and covering
 - By evolution or similar
- Feedback can be based on either
 - The performance obtained by using the action
 - The accuracy of a rule’s prediction
- Sometimes the database is divided into semi-permanent “teams” of rules that are known to work well together
Fuzzy reasoning

• Based on human processing of noisy/imprecise/partial data

• Two key concepts
 • **Granulation**: everything is “clumped”, e.g. a person can be “young”, or “middle-aged”, or “old”
 • **Graduation**: everything is a matter of degree, e.g. a day can be “not cold”, or “a bit cold”, or “a lot cold”, or …

• Instead of saying that a state is either “cold” or “not cold”, we assign a degree of truth: e.g. a state is “0.8 cold”

• Operators are changed accordingly, e.g.
 • \(v(\text{not}(p)) = 1 - v(p) \)
 • \(v(p \text{ and } q) = \min \{v(p), v(q)\} \)
 • There are several alternative formulations for **and**
Fuzzy contd.

- A fuzzy control system is a collection of rules
 - IF X [AND Y] THEN Z
 - e.g. IF cold AND not warming-up THEN increase heating slightly
- These rules attempt to mimic human-style logic
- Granulation means that the exact values of constants are unimportant

- In each cycle, the system
 - Takes a set of observations and fuzzifies them
 - Applies all of the rules that match, generating a set of fuzzy results
 - Defuzzifies the results to get a precise output
Example from http://www.faqs.org/docs/fuzzy/

- temp is 0.48 cool
- pressure is 0.57 low and 0.25 ok
- Rule 2 gives 0.48 P2
- Rule 3 gives 0.25 Z
Market-based algorithms

• Based on the greedy operation of trading markets
Bayesian reasoning

- Based on probabilistic reasoning with learning
Artificial immune systems

- Based on the learning mechanisms of body-defense systems