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Summary – Lecture 07

 Feature Detection

 Feature Extraction

 Harris Corner Detector

 Histogram of Oriented Gradients (HOG)

 Local Binary Patterns (LBP)

 Scale Invariant Feature Transform (SIFT)
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Overview of this lecture

 What is camera calibration

 Why is it useful

 Pinhole camera model

 Perspective projection

 Camera calibration matrix derivation

 Camera calibration matrix estimation

 Calculating intrinsic and extrinsic camera parameters

 Calibration demo
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What is camera calibration?
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 The process of estimating camera parameters

 The 3D world coordinates are projected on the 2D image plane (film)

 The relationship between the world coordinates and image coordinates is 

defined by the camera parameters

 There are 5 intrinsic and 6 extrinsic camera parameters
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Why do we need to calibrate cameras?
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 To estimate the 3D geometry of the world

 To correct imaging artefacts caused by imperfect lenses

 Examples include

• Stereo reconstruction

• Multiview reconstruction

• Single view measurements such as the height of a person

• Lens distortion correction
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Camera parameters
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 Intrinsic parameters (total 5)

• Focal length in pixel coordinates (2 if the pixels are rectangular)

• Principle point (2 coordinates)

• Skew

 Extrinsic parameters (total 6)

• 3 rotations

• 3 translations
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The pinhole camera model
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 A box with a pinhole will make an inverted image of the object on its back 

plane

 The holes must be a point which is 

practically impossible

 Used as a simplified model of 

the real camera

 Why pinhole?

• If the hole is not small, rays of light

will not be focused
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Camera calibration : Quick overview
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 Imagine a pinhole camera with the imaging plane in front

 C is the optical center, M is a point

in 3D space and m is its projection

‘K’ contains the 5 intrinsic parameters and is called the camera intrinsic matrix

‘R’ is the rotation matrix and ‘t’ the translation vector. R and t are the extrinsic

parameters and have 3 degrees of freedom each.

Principle point

Axis skew causes shear distortion
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Camera calibration : Quick overview (cont’d)
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 Let us expand this equation

 Pixel coordinates (u,v) start from

the top left corner of the image 
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Rotation matrix T
ra

n
s
la

ti
o

n
 v

e
c
to

r



The University of Western Australia 

Camera calibration : Quick overview (cont’d)
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3D location of the point

in Camera coordinates
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Camera calibration : Quick overview (cont’d)
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3x4 Camera Calibration Matrix
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Perspective projection
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 The projection of a 3D point relative to

the camera coordinate system is

 We can write this in matrix form

using homogeneous coordinates

 Pixel coordinates are define w.r.t. the top left corner of the image
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Intrinsic camera matrix derivation
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 Substituting these values

 in the perspective projection equation

 and rearranging

Note that for the simple case, we only 

have 3 intrinsic parameters but for the 

general case we have 5. 
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Looking back at the general case
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 The world coordinates are fist rotated and translated to the camera 

coordinates

 and      are the focal length expressed in pixels. Due to rectangular pixels, 

scale factors differ along the x and y dimensions.

 is non-zero if there is skew in the image plane.
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Camera calibration matrix
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The camera calibration matrix P is defined only up to an unknown scale s. 

Thus the last term in P can be set to 1.

The aim of camera calibration is to find 

these unknowns given a set of known 

XYZ world points and  their corresponding 

uv locations in an image
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For i = 1 …. N points
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Writing as a system of linear equations (Aq = b)
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2N x 11 Matrix
11 vector

of unknowns
2N vector

How many equations do we need to solve this?

How many points do we need to solve this?
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Camera calibration targets
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 3D checker board makes a good calibration target

 Any 3D structure where precise XYZ
locations of some points (>5) are known can be used

 3D targets

• Calibration is easy with single image

• Most accurate approach

• Expensive target

• Visibility of points can be an issue in case of 
multiple cameras located at different view points

 2D planar targets

• Simpler target and better visibility for multiple cameras

• Needs multiple images after rotating the target

 1D line targets

• Simplest target and can be seen from 360 degrees

• Still very new
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Solving for q
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 Since every point gives two equations, we need at least 6 non-coplanar 

points to solve 

 We can solve this using linear least squares

 Can be solved in one line of Matlab

 For a unique solution, must be  non-singular i.e.

or                 must be 11.  

Need                               non-coplanar points.
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Calculating the camera calibration matrix (2nd method)
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 Removing the condition 
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2N x 12 Matrix
12 vector

of unknowns

Calculating the camera calibration matrix (2nd method)
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Solving for q using Eigen decomposition (Direct Linear 

Transformation or DLT)
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 To find the solution of

 We need to find the non-trivial null vector of A.

 ‘A’ can have up to 12 eigenvalues.

 Case 1: If rank(A) is 12, its nullity is zero. There is no non-trivial null vector of A.

 Case 2: If rank(A) is 11, it will have exactly one zero eigenvalue and the 

corresponding eigenvector will be the solution of

 Case 3: If rank(A) < 11, there are infinite solutions to

Check if data is degenerate. Recalibrate.    
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Solving for q
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 In practice, the smallest eigenvalue of ‘A’ will not be exactly equal to zero

but will have a small value due to noise.

 The smallest eigenvector of ‘A’ is our solution i.e. q.

 Rule of thumb: Always check the smallest eigenvalue and/or the ratio 

between the largest and smallest values to estimate noise in the data.

 High levels of noise mean error in the construction of the matrix A.
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Decomposition of the P matrix
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 The ‘q’ matrix computed with DLT differs from ‘P’ by an unknown scale ‘s’
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Properties of a rotation matrix R
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 Can be used to decompose the P matrix into intrinsic and extrinsic parameters

 Sum of squares of the elements in each row or column = 1

 Dot product of any pair of rows or any pair or columns = 0

 The rows of R represent the coordinates axes of the rotated space in the 

original space. (vise versa for columns of R)

 Determinant of R is +1.
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Decomposing the P matrix 
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We can write the camera matrix P as follows:

M is a 3x3 invertible matrix and C is the camera center position in world coordinates.

• Good to project 3D into 2D

• It does not tell you about the camera pose

• It does not tell you about the camera’s internal geometry

We can decompose this into intrinsic and extrinsic matrices as follows:

Where K is the camera intrinsic matrix and R is the rotation matrix. 

t = –RC is the translation vector or the position of the world origin in camera coordinates
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Recovering the intrinsic parameters
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Since P is defined up to a scale factor, the last element is usually not 1.

Therefore, we have to normalize B so that the last element is 1.

Intrinsic parameters are then calculated as follows: 
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Recovering the extrinsic parameters
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 Once intrinsic parameters are known, K is known.

 Extrinsic parameters can be calculated as



The University of Western Australia 

Decomposing matrix P with RQ-factorization
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 Can also recover intrinsic and extrinsic parameters with RQ-factorization

 Recall

 Notice that K is an upper triangular matrix and R is an orthonormal matrix.

 We can recover K and R by RQ-factorization of M. 

 ‘t’ can be recovered by                       where 

[K, R, C, pp, pv] = decomposecamera(P); % use Peter Kovesi’s Matlab code
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Remarks
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 Since RQ-factorization doesn’t have a unique solution, the diagonal entries are forced to 

be positive. (Negating a col in K and the corresponding row in R will give the same 

camera matrix P). This is a correct approach if 

• Your image’s X/Y axes point in the same direction as your camera’s X/Y axes

• Your camera looks in the positive-z direction

 If the z-coordinates of the camera and world are pointing in the opposite direction, things 

can go wrong e.g. in OpenGL, the camera points in the negative z direction.

 For the general case some checks must be performed:

• If camera and world x-axes are opposite, negate the 1st col of K and row of R.

• If camera and world y-axes are opposite, negate the 2nd col of K and row of R.

• If camera and world z-axes are opposite, negate the 3rd col of K and row of R.

• If det(K) = -1, multiply K by -1.
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Limitations of the linear approach
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 Using least square minimization to get ‘q’ has little physical meaning.

 The method ignores constraints on the elements of ‘P’. The elements of ‘P’

are not arbitrary e.g. we may not be able to decompose it into an intrinsic 

and extrinsic parameter matrix.

 A more accurate approach is to use constrained non-linear optimization to 

find the calibration matrix.
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Constrained non-linear optimization
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 Estimate P using one of the linear methods.

 Use this P as an initial guess and reproject the points on the image plane.

 Minimize the distance between all measured and reprojected image points.

 Ensure that R remains a rotation matrix

 Iterate until convergence
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Radial distortion
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 Barrel distortion

• Image magnification decreases with distance from the optical axis

 Pincussion distortion

• Image magnification increases with distance from the optical axis

 Distortion is higher as we move away from the center of the image

 Thus distortion is a function of the radius ‘r’

No distortion Barrel distortion Pincussion distortion
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Radial distortion correction
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 We can model radial distortion in the projection by applying a simple 

polynomial transformation

 Apply radial distortion to normalized camera coordinates

 Use distorted camera coordinates to calculate image coordinates
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Barrel distortion correction example
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Calibration Demo
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Camera Calibration Toolbox for Matlab J. Bouguet – [1998‐2000]
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Calibration Demo
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Calibration Demo
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Calibration Demo
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Calibration Demo
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Calibration Demo
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Calibration Demo
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Calibration Demo
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Summary

 What is camera calibration

 Why is it useful

 Perspective projection

 Estimating the camera projection matrix

 Recovering the intrinsic and extrinsic parameters

 Radial distortion

 Calibration demo
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