

CITS 4402 Computer Vision

A/Prof Ajmal Mian Adj/A/Prof Mehdi Ravanbakhsh

Lecture 06 – Object Recognition

ACHIEVE INTERNATIONAL EXCELLENCE

Objectives

- अ To understand the concept of image based object recognition
- अ To learn how to match images beyond simple template matching
- अ To study the object recognition pipeline
- ע To learn about classification algorithms
- A brief introduction to machine learning

Specific Recognition Tasks

- Recognition is a core computer vision problem
- Scene classification (Outdoor / Indoor)
- Image tagging (street, people, tourism, mountain, cloudy, ...)
- Lind pedestrians

What is "Recognition"?

⊔ Identification

VS.

What is "Recognition"?

∠ Categorization

VS.

Detection versus Recognition?

- 1. Face detection: Where are faces in an image?
- 2. Specific Person detection: Where is Person X in an image?
- 3. Face recognition: Given a face image (from step 1), find the identity of the person.
- 4. Can you define pedestrian detection and stop sign detection now?

Scale of detection

- > Faces may need to be detected at different scales
- ש We can have nested detections
 - Detect face
 - Detect features such as eye corners, nose tip etc

Visual Recognition

- ❑ Design algorithms that are capable of
 - Classifying images or videos
 - Detect and localize image
 - Estimate semantic and geometrical attributes
 - Classify human activity and events
- ש Why is this challenging?

How many Object Categories are there?

Challenges – Shape and Appearance Variations

8/04/2018

Computer Vision - Lecture 06 - Object Recognition

Challenges – Viewpoint Variations

Challenges – Illumination

Challenges – Background Clutter

8/04/2018

Computer Vision - Lecture 06 - Object Recognition

Challenges – Scale

Challenges – Occlusion

8/04/2018

Challenges do not appear in Isolation!

- コ Task: Detect phones in this image
- א Appearance variations
- **凶** Viewpoint variations
- ע Illumination variations
- Background clutter
- Scale changes
- ☑ Occlusion

↘ Reading license plates, zip codes, checks

- ↘ Reading license plates, zip codes, checks
- Singerprint recognition

- ↘ Reading license plates, zip codes, checks
- ↘ Fingerprint recognition
- ש Face detection

[Face priority AE] When a bright part of the face is too bright

- ↘ Reading license plates, zip codes, checks
- ↘ Fingerprint recognition
- ע Face detection
- ❑ Recognition of flat textured objects (CD covers, book covers, etc)

What works today

- ↘ Who has the largest database of tagged/labelled faces?
- ❑ DeepFace is developed by Facebook
- A 9-layer deep neural network with over 120 million parameters using several locally connected layers.....Thus we (facebook) trained it on the largest facial dataset to-date, an identity labelled dataset of 4 million facial images belonging to more than 4,000 identities, where each identity has an average of over a thousand samples."

Image Features

- ☑ Two primary characteristics for object recognition:
 shape and appearance
- Shape can be modeled with Principal Component Analysis (PCA)
- ☑ PCA can also model appearance
- ❑ Appearance can be modeled with Colour Histograms

Example of Shape Modeling using PCA

↘ What is the shape of an aircraft?

Images as Data Points

- A N x N pixel image represented as a vector occupies a single point in N²-dimensional image space.
- Images of particular objects being similar in overall configuration, will not be randomly distributed in this huge image space, but will form *clusters*.
- Therefore, they can be compactly represented and modelled in a low dimensional subspace.

Principal Component Analysis (PCA)

- Calculate vectors that account for the maximum variance of data
 - These vectors are called *Eigen Vectors*.
- Eigen Vectors show the direction of axes a fitted ellipsoid
- Eigen Values show the significance of the corresponding axis.
 - Large value -> more variance
- For high dimensional data, only a few of the Eigen values are significant

Principal Component Analysis (PCA)

- ↘ Find Eigen Values and Eigen Vectors
- ↘ Chose the highest P Eigen Values
- Form a new coordinate system defined by the significant Eigen vectors
- Project data to the new space (rotate the basis)
- ע Compressed Data

Principal Component Analysis (Maths)

- Let *X* be a matrix of the training images (each column is a vectorized image)
- Σ Finds its column mean $\mu = \frac{1}{n} \sum X_i$ (average face)
- Subtract mean from all data $\hat{X} = X \mu$
- $\forall USV^T = \hat{X} \hat{X}^T$ (singular value decomposition)
- Columns of U are the Eigen Vectors and diagonal of S are the Eigenvalues (sorted in decreasing value)
- Solution Chose P eigenvectors i.e. first P columns of U
- If *m* is the number of pixels and m > n then use the following trick
- ש $U_1 SV^T = \hat{X}^T \hat{X}$ and $U = \hat{X}U_1$
- Any data sample *x* can be projected to the PCA space as $U_p^T(x \mu)$ where U_p contains the top (first) P eigenVectors of U

PCA for Recognition

- \forall U (the Eigenvector matrix) is calculated from training data
- Test data is also projected to the same PCA space (same U)
- Nearest neighbor is used for classification
- ▶ If the original images were of $m \times m = 50 \times 50 = 2500$ dimension and we chose P = 20. The projected images will be only 20 dimensional
- ▶ If our training samples n = 100, the total possible Eigenvectors with nonzero eigenvalues will always be < 100 (99 at most)

Case Study – Face Recognition

- ↘ Milestone methods in face detection / recognition
- 1. PCA and Eigenfaces (Turk & Pentland, 1991)
- 2. LDA and Fisherfaces (Bellumeur et al. 1997)
- 3. AdaBoost (Viola & Jones, 2001)
- 4. Local Binary Patterns (Ahonen et al. 2004)
- 5. DeepFace (Facebook, 2014)

PCA and Eigenfaces – Training

1. Align training images x_1, x_2, \dots, x_N

2. Compute average face $\mu = \frac{1}{N} \Sigma x_i$

- 3. Compute PCA of the covariance matrices of the difference images
- 4. Compute training projections $a_1, a_2, ..., a_N$

PCA and Eigenfaces – Testing

Visalization of Eigenfaces

These are the first 4 eigenfaces (eigenvectors) from a training set of 400 images

- 1. Take query image *y*
- 2. Project *y* into the Eigenface space $\omega = U_p^T (y \mu)$
- 3. Compare projection ω with all training projection a_i
- 4. Identity of the query image *X* is chosen as that of the nearest image (i.e. the one with the lowest $||w a_i||$

Reconstruction using PCA

- Fewer eigenfaces result in more information loss, and hence less discrimination between faces.

PCA Final Note

- > PCA finds directions of maximum variance of the data.
- ↘ This may not separate classes at all.
- Basic PCA is also sensitive to noise and outliers (read other variants e.g. Robust PCA).
- Linear Discriminant Analysis LDA finds the direction along which between class distance is maximum.

- Sometimes PCA is followed by LDA to combine the advantages of both.
- Ligen eyes, eigen nose, eigen X your imagination is the only limination.

Importance of Colors in Object Detection / Recognition

Colour Histogram

- ↘ Colour stays constant under geometric transformations
- ע Colour is a local feature
 - It is defined for each pixel
 - It is robust to partial occlusion
- ע Idea:
 - can use object colours directly for recognition, or
 - better use statistics of object colours
- Solour histogram is a type of appearance features

Colour Sensing

Computer Vision - Lecture 06 - Object Recognition

Colour Spaces – RGB

- ↘ Primaries are monochromatic lights
 - for camera: Bayer filter pattern
 - for monitors; they correspond to the 3 types of phosphors

Colour Spaces – CIE XYZ

- ❑ Links physical pure colours (i.e wavelengths) in the electromagnetic visible spectrum and physiological perceived colours in human colour vision.
- \checkmark Primaries *X*, *Y*, and *Z* are imaginary, but the matching functions are everywhere positive
- ▷ 2D Visualization: illustrates the *x* and *y* values where x = X/(X + Y + Z) and y = Y/(X + Y + Z). The value of z = 1 x y.

Colour Spaces – HSV

- ❑ HSV Hue, Saturation, Value (Brightness)
 - Nonlinear reflects topology of colours by coding hue as an angle
 - Matlab functions: hsv2rgb, rgb2hsv

Colour Histograms

- ↘ Colour histograms are colour statistics
 - Here, RGB as an example
 - Given: tristimulus R, G, B for each pixel
 - Compute a 3D histogram
 - h(R,G,B) = #(pixels with colour (R,G,B))

Colour Normalization

- - If a colour vector is multiplied by a scalar, the intensity changes but not the colour itself.
 - This means colours can be normalized by the intensity.
 - Note: intensity is given by I = (R + G + B)/3
 - Chromatic representation:

$$r = \frac{R}{R+G+B}$$
 $g = \frac{G}{R+G+B}$ $b = \frac{B}{R+G+B}$

Since r + g + b = 1, only 2 parameters are needed to represent colour (knowing *r* and *g*, we can deduce b = 1 - r - g).

 \Rightarrow Can compute colour histogram using r, g, and b instead.

Object Recognition based on Colour Histograms

- ▶ Proposed by Swain and Ballard (1991).
- ❑ Objects are identified by matching a colour histogram from an image region with a colour histogram from a sample of the object.
- अ Technique has been shown to work remarkably robust to
 - changes in object's orientation
 - changes of scale of the object
 - partial occlusion, and
 - changes of viewing position and direction.

Object Recognition based on Colour Histograms

Colour histograms

- are discrete approximation of the colour distribution of an image.
- contain no spatial information ⇒ invariant to translation, scale, and rotation

Histogram Comparison with Multiple Training Views

What is a Good Comparison Measure?

↘ How to define matching cost?

Comparison Measures

Euclidean distance (L₂ norm)

$$d(\boldsymbol{q},\boldsymbol{v}) = \sum_{i} (q_i - v_i)^2$$

- Motivation of the Euclidean distance:
 - Focuses on the differences between the histograms.
 - Interpretation: distance in the feature space.
 - Range: [0,∞).
 - All cells are weighted equally.
 - Not very robust to outliers !

Comparison Measures (Cont.)

Chi-Square distance:

$$d(\boldsymbol{q}, \boldsymbol{v}) = \sum_{i} \frac{(q_i - v_i)^2}{q_i + v_i}$$

Chi-Square distance:

$d(\boldsymbol{q}, \boldsymbol{v}) = \sum_{i} \frac{(q_i - v_i)^2}{q_i + v_i}$

א Motivation of the χ^2 distance:

- Statistical background
- Test if two distributions are different.
- · Possible to compute a significance score.
- Range: [0,∞).
- · Cells are not weighted equally !
- More robust to outliers than the Euclidean distance, if the histograms contain enough observations...

- Solution Motivation of the χ^2 distance:
 - Statistical background
 - Test if two distributions are different.
 - Possible to compute a significance score.
 - Range: [0,∞).
 - Cells are not weighted equally !
 - More robust to outliers than the Euclidean distance, if the histograms contain enough observations...

Comparison for Image Retrieval

↘ The image retrieval problem concerns the retrieval of those images in a database that best match a query image.

Query		_		M				
-		11		1		- Anna	din.	
1) 0.00 29020.jpg	2) 0.53 29077.jpg	3) 0.81 157090.jpg	4) 0.61 9045.jpg	5) 0.63 191037.jpg	6) 0.07 20003.jpg	7) 0.70 81005 (pg	E) 0.70 160053.jpg	

L2 distance

 χ^2 distance

Query				-			
				. April	-	white we	-20
1) 0.00 39020.jpg	2) 0.36 29077 jpg	3) 0.43 39017 jpg	4) 0.61 29005 jpg	5) 0.72 191031 jpg	6) 0.73 77647 jpg	7) 0.75 197097 jpg	\$) 0.77 36003 jpg

Jeffrey divergence

Earth Movers Distance

Histogram Comparison

- ש Which measure is the best?
 - It depends on the application
 - Euclidean distance is often not robust enough.
 - Generally, χ^2 distance gives good performance for histograms
 - KL/Jeffreys divergence works well sometimes, but is expensive
 - EMD is the most powerful, but also very expensive.

Object Recognition Using Histograms – Summary

- Simple algorithm
 - 1. Build a set of histograms $H = \{h_i\}$ for each known object.
 - More exactly, for each view of each object.
 - 2. Build a histogram h_t for the test image.
 - 3. Compare h_t with each $h_i \in H$ using a suitable histogram comparison measure.
 - 4. Select the object with the best matching score; or reject the test image if no object is similar enough.

This is known as the "nearest-neighbour" strategy.

A simple Object Recognition Pipeline Training Labels Machine Training Images Learning Image Learned Training **Features** Classifier Training Testing Test Image Learned Image Prediction Features Classifier

8/04/2018

Computer Vision - Lecture 06 - Object Recognition

The University of Western Australia 53

Goal of Machine Learning

- Solution Consider a 28 x 28 pixel image
- ☑ Represented by a 784 dimensional vector x
- Soal: build a machine that takes the vector *x* as input and produces the identity of digit 0,...,9 as the output

The Machine Learning Framework

- > Training data consists of data samples and the target vectors
- Learning / Training: Machine takes training data and automatically learns mapping from data samples to target vectors

Test data A Set tage A

- Target vectors are concealed from the machine
- Machine predicts the target vectors based on previously learned model
- Accuracy can be evaluated by comparing the predicted vectors to the actual vectors

Classification

- Any decision rule divides input space into decision regions separated by decision boundaries

Nearest Neighbour Classifier

Assign label of nearest training data point to each test data point

Nearest Neighbour Classifier

Partitioning of feature space for two-category 2D data using 1-nearest-neighbour

K-nearest-neighbour

⊔ Distance measure – Euclidean

$$D(X,Y) = \sqrt{\sum_{i=1}^{D} (x_i, y_i)^2}$$

- א 1-nearest-neighbour f(+) = *
- א 3-nearest-neighbour f(+) = *
- S-nearest-neighbour f(+) = 0

K-NN Practical Matters

- Choosing the value of k
 - If too small, sensitive to noise points
 - If too large, neighbourhood may include points from other classes
 - Solution: cross-validation
- ❑ Can produce counter-intuitive results
 - Each feature may have a different scale
 - Solution: normalize each feature to zero mean, unit variance
- Surse of dimensionality ∠
 - Solution: no good solution exists so far
- ↘ This classifier works well provided there are lots of training data and the distance function is good.

Discriminative Classifiers

Nearest Neighbours Classifier

Model space

Winning class: pink

K-Nearest Neighbours Classifier

Query image

Model space

Linear Classifiers

Support Vector Machines: find the hyper-planes (if the features are linearly Z separable) that separate these classes in the model space

Model space

Linear Classifiers

Suppose that the points are in 2D. Points in class 1 have label $y_i = +1$; points in class 2 have label $y_i = -1$.

Given { (x_i, y_i) , where $y_i \in \{-1, +1\}$ }, for i = 1, ..., N. Here $x_i \in \mathbb{R}^2$. Find w and b such that $w^T x_i + b \ge 1$ if $y_i = +1$ $w^T x_i + b \le -1$ if $y_i = -1$

Linear Classifiers

Once we have learned w and b, we can do classification on any given test point x_* . This is known as the **testing stage**.

> If $w^T x_* + b \ge +1$ then classify x_* into class 1 else classify x_* into class 2

Nonlinear SVMs

The linear SVM works out great when the data are linearly separable. E.g. the 1D case below:

Sut what is the data are more complicated? Like

0

8/04/2018

Computer Vision - Lecture 06 - Object Recognition

х

Nonlinear SVMs

▶ We use a lifting transformation Φ to transform the feature vectors to a higher dimensional space.

Summary

- ↘ Challenges in Object Recognition
- A Simple Object Recognition Pipeline
- Principal Component Analysis
- ∠ Colour Histograms
- ❑ Discriminative Classifiers (k-NN and SVM)

Acknowledgements: The slides are based on previous lectures by A/Prof Du Huynh and Prof Peter Koveski. Other material has been taken from Wikipedia, computer vision textbook by Forsyth & Ponce, and Stanford's Computer Vision course by Fei-Fei Li.