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Objectives of this lecture 

 To learn about linear and non-linear filters 

 To learn about convolution 

 To learn Fourier Transform and Discrete Fourier Transform (DFT) 

 To learn the relationship between frequency and spatial domains 

 Frequency domain filtering and Lab week03 (hybrid images) 
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Images as 2-Dimensional Signals 

 To understand the processing of greyscale images, it is important to have 

an understanding of the Fourier Transform 

 

 A greyscale image can be treated as a 2-D signal. 

 

 A signal is any physical phenomenon that can be modelled as a function of 

time or position to some real- or vector-valued domain, and is used to carry 

information. 

 

 A signal is said to be analog, when the domain and range are continuous; 

or digital, when both are discrete. 
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Analog and Digital Signals 
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1-D and 2-D Signals 

 For simplicity, we will study 1-dimensional 

signals. 
 

 For 1D, the axis will usually be time, the intuitive 

way to think of the signal s(t) is an audio signal. 

For discrete signals, we also write sj. 
 

 For 2D, the axes will usually be 2D-space, and we 

will call the signal s(x , y) an image. For discrete 

signals, we also write si ,j  or s [x , y ].  
 

 Despite the different notation, the principles are 

the same! 
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Filters and filtering 

 Filtering is any operation that transforms one signal into another signal 
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Linear and Non-linear Filters 

 A filter T  is called linear if it acts on the signal linearly, i.e. for all signals s1  

and s2 and constants α and β the following holds: 

 

 

Otherwise, the filter is called non-linear. 

 

 Scaling of amplitude (volume): T: s(t) → c · s(t) is linear 

 

 

 

 

 Shift in time (phase shift): T: s(t) → s(t + c) is linear 
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Linear and Non-linear Image Filters 

 Scaling of intensity 𝑠 𝑥, 𝑦 → 𝑐 ∙ 𝑠 𝑥, 𝑦  is ? 

 

 

 

 

 Geometric operations (translation, rotation, mirroring) are ? 

 

 

 

 

 Gamma correction 𝑠 𝑥, 𝑦 → 𝑐 ∙ 𝑠 𝑥, 𝑦 𝛾 is ? 
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Linear and Non-linear Image Filters 

 Scaling of intensity 𝑠 𝑥, 𝑦 → 𝑐 ∙ 𝑠 𝑥, 𝑦  is linear 

 

 

 

 

 Geometric operations (translation, rotation, mirroring) are linear 

 

 

 

 

 Gamma correction 𝑠 𝑥, 𝑦 → 𝑐 ∙ 𝑠 𝑥, 𝑦 𝛾 is non-linear 
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Convolution 

 Convolution (f ∗ g) of two signals f and g is defined 

as the integral/sum of the product of the two 

functions after one is reversed and shifted 

 

 

 

 

 Convolution gives the area overlap between the 

two functions as a function of the amount that one 

of the original functions is translated after reversal 
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http://www.jhu.edu/~signals/convolve/index.html 
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Example of 2-D Convolution 
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Example of 2-D Convolution 
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Example of 2-D Convolution 
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Detecting Signals 

 Often, we have two signals:  (1) “real-life” that we are measuring, (2) ideal 

signal we are looking for. 

• How can we check if a signal s(t) contains another signal σ(t)?  And if it 

does, how much of it? 

 First, we have to give a meaning to “how much” 

 

 Let s(t) be a signal on D, then the energy of s is 

 

 

 

 Physically, s is a wave function and E  is its energy. 

 Mathematically, E  is the squared norm of s ∈ L2(D). 

 Example:  a sine wave sin(t) on [0, 2π] has the energy 
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Correlating Signals 

 Take a signal σ with energy E = 1. 

 To calculate how much of σ there is within s, we treat both as random 

processes and calculate their correlation coefficient: 

 

 

 

 If s is exactly σ, then α = E (σ) = 1. 

 For signals σ of arbitrary energy, α is often normalized by the energy of σ: 

 

 

 

 That way, s = σ again implies α = 1. 
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Examples of Signal Correlation 

 Let s be a slightly disturbed version of σ: 

 

 

 

 

 The contributions to the integral are large. α will be large. 

 Warning: s and σ have to be synchronized ! 

 If there is a phase shift, the signal may be missed: 

 

 

 

 s is the same disturbed version of σ, but shifted in time. 

 Positive and negative contributions in the integration cancel each other and α 

might end up small. 
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Cross-Correlation 

 Usually when we search for a signal, its shape is known, but its position 

(phase) within the measurement is not! 

 To detect phase shifted signals, we introduce a parameter t to express the 

translation in time: 

 

 

 

 This integral is called cross-correlation between s and σ. 

 As we saw earlier, this is just a linear filter defined by σ.  This filter is called 

matched filter. 

 The filter response is maximal at the ‘most probable’ position for σ to be 

located within s. 

12/03/2018 Computer Vision - Lecture 03 - Discrete Fourier Transform    18 



The University of Western Australia  

Convolution and Cross-Correlation 
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Fourier Theory 

 A signal s(t) is called periodic, if it forever repeats itself after a certain time, 

i.e. there is a time p such that 

 

 

 The time p is called the periodic length of the signal, its inverse is called 

the frequency. 

 

 Example: the cosine wave 𝑠 𝑡 = cos(𝑡) 
 

 

 

 

 Every signal on a finite interval of length l  can be made periodic by 

repeating or mirroring it at the boundaries. 
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Fourier Theorem 

 Any periodic signal is composed of a superposition of pure sine and cosine 

waves, with suitably chosen amplitudes, whose frequencies are harmonics 

of the fundamental frequency of the signal. 

 

 In formulas:  For any signal s(t) that is periodic on the interval [0, 2π] there 

are real-valued constants αk and βk such that 

 

 

 

 

 This sum is called the Fourier series of s.  For signals on other intervals 

and with other periodic lengths, it works essentially the same. 
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Fourier Series of the Rectangular Wave 
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Fourier Series of the Rectangular Wave 

 Illustration of the first terms in the Fourier series 

 black: original wave red: k = 1 

 yellow: k = 1, 3               green: k = 1, 3, 5 

 blue: k = 1, 3, 5, 7 gray: k = 1, 3, 5, 7, 9 

 Demo:  http://www.falstad.com/fourier/ 
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How to find the Fourier coefficients? 

 sin(kt) and cos(kt) are the signals we want to detect in s(t). 

 

 αk  and βk  indicate how much sin(kt) and cos(kt) contribute to the signal s(t). 

 

 We obtain the contribution by integrating the signal against them and 

dividing by their energy. 
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From Discrete to Continuous Frequency Spectrum 

 For the Fourier-Series we only need contribution coefficients for sines / 

cosines with frequencies that are integer multiples of the periodic length. 

 We can calculate the integral for any other frequency 𝜔 as well. 

 We obtain a continuous frequency spectrum of the signal: 

 

 

 

 

 

 

 

 

 where 𝛼(𝜔) describes the contribution of a sine-wave with period 𝜔, and 

𝛽(𝜔) describes the contribution of a cosine-wave with period 𝜔. 
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The Fourier-Transform 

 Using complex numbers and the Euler identity 

 

 

 

 This can be combined into one complex-valued equation.  This is often 

renormalized to: 

 

 

 

 

𝑠  is called the Fourier-Transform of 𝑠. 

 

12/03/2018 Computer Vision - Lecture 03 - Discrete Fourier Transform    26 



The University of Western Australia  

Fourier Transform Pairs 
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Fourier Transform Pairs 
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Fourier Transform Pairs 
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Fourier Transform Pairs 
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The Inverse Fourier-Transform 

 We can reconstruct s(t) from its Fourier transform at integer points. 

 If we know all of 𝑠 , there is an explicit inversion filter 

 

 

 

 

 We can study any signal either in the time domain as 𝑠(𝑡), or in the 

frequency domain as 𝑠 (𝜔). 

 Since 𝑠 and 𝑠  both are signals, we can also apply filters in one domain to 

the other: 
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Why are we interested in the Fourier Transform? 

 Can manipulate an image in the frequency domain 

We can manipulate an image (e.g., sharpening it) in the Fourier domain (or 

frequency domain) by firstly applying the Fourier Transform to the input 

image (in the spatial domain) 

 

 Can represent an Image using its Fourier Components 

We can also represent an image using its Fourier components – knowing 

these components allow us to reconstruct the image back 
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 Image Processing Pipeline in the Frequency Domain 
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 An appropriate manipulation in the frequency domain can lead to  

• the output image being smoothed (noise removal) 

• the output image being sharpened 

• certain features being removed in the output image because they fall 

inside a specific frequency range 

 

 

 

 

 

 

 More on image processing in the frequency domain will come later. 
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Amplitude and Phase 

 At a frequency value 𝜔0, the term 𝐹 𝜔0  will be a complex number of the form 

𝑎 + 𝑖𝑏. The amplitude at that frequency 𝜔0 is 𝑎2 + 𝑏2 and the phase angle is 

tan−1 𝑏

𝑎
 

amplitude 
amplitude 

The blue curve 

has a negative 

phase angle. 

The red curve 

has a 0 phase 

angle. 
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Amplitude and Phase (cont.) 

 

 In many applications only the amplitude information is used. 

However, in images (and in sound signals) phase carries most of the 

information 

 

 The classic demonstration of this was devised by Oppenheim & Lim in 

1981:  if you construct a synthetic image composed of the amplitude 

information from image A and the phase information from image B, it is 

image B that you see in the result. 

Reference: Oppenheim, A. V. and Lim, J. S. “The Importance of Phase in Signals”, 

Proceedings of the IEEE, vol. 69, no. 5, pp. 529-541, May 1981. 
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Amplitude and Phase (cont.) 

Reconstructed image using the 
phase information from image 
B and amplitude information 
from image A image A 

image B 

Oppenheim & Lim’s demonstration 
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Important Properties of the Fourier Transform 

 If 𝐹 𝜔  is the Fourier Transform of 𝑓 𝑥 , 

  𝐺 𝜔  is the Fourier Transform of 𝑔 𝑥 , and 

  𝑎 and 𝑏 are constants 

• The Fourier Transform is linear 

F 𝑎𝑓 𝑥 + 𝑏𝑔 𝑥 = 𝑎𝐹 𝜔 + 𝑏𝐺(𝜔) 

 

• Changing the spatial scale inversely affects frequency and amplitude 

F 𝑓 𝑎𝑥 =
1

𝑎
𝐹

𝜔

𝑎
 

 

• Shifting the function only changes the phase of the spectrum 

F 𝑓 𝑥 − 𝑎 = 𝑒−𝑖2𝜋𝜔𝑎𝐹 𝜔  

 Note that the amplitude spectrum is invariant to spatial shift. 
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The Convolution Theorem 

 The convolution Theorem states that: 

 Convolution in the spatial domain corresponds to multiplication in the 

frequency domain and vice versa. That is, 

                        𝑓 𝑥 𝑔 𝑥 𝐹 𝜔 𝐺(𝜔) 

                            𝑓 𝑥 𝑔 𝑥 𝐹 𝜔 𝐺(𝜔) 

 

 For efficiency purpose, convolution in one domain is often implemented as 

multiplication in the other domain. 

 

 Division in the frequency domain corresponds to deconvolution in the 

spatial domain. This can be the basis by which blurred images can be 

restored. 
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The Convolution Theorem 

12/03/2018 Computer Vision - Lecture 03 - Discrete Fourier Transform    39 



The University of Western Australia  

The Convolution Theorem 
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Discrete Fourier Transform (DFT) 

 In the continuous domain we have an infinite number of basis functions. 

 In an image we have a discrete number of points. The Discrete Fourier 

Transform provides information over a discrete number of frequencies.  

What frequencies are these? 

- To answer this question, we need to understand the sampling of data 

Some terminology: 

 In the time domain: 

• Sampling rate (or sampling frequency): #samples/second (Hz) 

• Sampling interval = 1/(sample rate), e.g., samples are 0.3 seconds 

apart 

 In the spatial domain: 

• Sampling rate (or sampling frequency): #samples/mm 

• Sampling interval = 1/(sample rate), e.g., samples are 0.07mm apart 
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The Nyquist Critical Frequency 

 For any sampling frequency 𝜔𝑠, there is a special frequency called the 

Nyquist critical frequency  

𝜔𝑐 =
𝜔𝑠

2
 

It is the highest frequency that can be represented by something sampled 

at that sampling frequency. 

 

Conversely, if we know the Nyquist critical frequency 𝜔𝑐 then we can work 

out the minimum sampling frequency 𝜔𝑠, which should be double of 𝜔𝑐. 
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Sampling and Reconstruction 
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DFT and Inverse DFT 

 Discrete Fourier Transform (1D): 

Let 𝑓 𝑥  be a 1D discrete signal of 𝑁samples. The DFT of 𝑓 𝑥  is given by 

𝐹 𝜔 =  𝑓 𝑥 𝑒−𝑖2𝜋𝜔𝑥/𝑁

𝑁−1

𝑥=0

 

 

 Inverse Discrete Fourier Transform (1D): 

Let 𝐹 𝜔  be the Discrete Fourier Transform of a 1D signal having 

𝑁samples. The inverse DFT is given by 
   

𝑓 𝑥 =
1

𝑁
 𝐹 𝜔 𝑒𝑖2𝜋𝜔𝑥/𝑁

𝑁−1

𝜔=0
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DFT and Inverse DFT (cont.) 

 Discrete Fourier Transform (2D): 

Let 𝑓 𝑥, 𝑦  be an 𝑁 × 𝑀image. The DFT of 𝑓 𝑥, 𝑦  is given by 

𝐹 𝜔, 𝜈 =   𝑓 𝑥, 𝑦 𝑒
−𝑖2𝜋

𝜔𝑥
𝑁

+
𝜈𝑦
𝑀

𝑀−1

𝑦=0

𝑁−1

𝑥=0

 

 

 Inverse Discrete Fourier Transform (2D): 

Let 𝐹 𝜔, 𝜈  be the Discrete Fourier Transform of an 𝑁 × 𝑀 image. The 

inverse DFT is given by 

𝑓 𝑥, 𝑦 =
1

𝑁𝑀
  𝐹 𝜔, 𝜈 𝑒

𝑖2𝜋
𝜔𝑥
𝑁 +

𝜈𝑦
𝑀

𝑀−1

𝜈=0

𝑁−1

𝜔=0
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Spatial Frequencies and DFT 
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Spatial Frequencies and DFT 
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Spatial Frequencies and DFT 
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Spatial Frequencies and DFT 
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Spatial Frequencies and DFT 
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DFT of Natural Images 
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Low-Pass Filtering 

 Removing all high spatial frequencies from a signal to retain only low spatial 

frequencies is called low-pass filtering. 
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High-Pass Filtering 

 Removing all low spatial frequencies from a signal to retain only high spatial 

frequencies is called high-pass filtering. 
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Fast Fourier Transform (FFT) 

 A simple implementation of the Discrete Fourier Transform of an N-sampled 
signal requires O(N2) operations. 

 The Fast Fourier Transform (FFT) is an ingenious algorithm which exploits 
properties of the Fourier Transform to enable the transformation to be done 
in O(N log2N) operations.  

However, ideally the size of the data should be a power of 2. 

If this is not the case, the data is either truncated or padded out with zeros. 

 

 The FFT has made Fourier analysis a practical reality. 

e.g., for a 256 × 256 image (total is: N = 216 pixels) 

 the ‘slow’ Fourier Transform needs 232 complex multiplications 

 FFT needs N log2N = 216 × 16  

                   = 220 complex multiplications 

 This is 212 times faster !!! 
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Doing Fourier Transform in Matlab 

 Matlab functions: 

• fft – for computing 1D Fourier Transform 

• ifft – for computing the inverse FT 

• fftshift – for shifting quadrants (for display purpose). Matlab returns the 

Fourier components for the 0 frequency (the DC term) as the first element of 

the array, whereas we want the DC term to be roughly in the middle of the 
array (see also ifftshift) 

• fft2 – for 2D FT 

• ifft2 – for 2D inverse FT 

• abs – use this function to get the amplitude 

• angle – and this one to get the phase angle 

• log, sqrt – the range of Fourier amplitudes for any given image is 

usually very large. Use these functions appropriately to rescale the range 

• imagesc – use this to display an image 
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Week 03 Lab : Hybrid Images 

 A. Oliva, A. Torralba, P.G. Schyns, "Hybrid Images“, ACM Transactions on 

Graphics, ACM Siggraph, 2006. (presentation, paper) 
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Week 03 Lab (a very popular example) 
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Week 03 Lab submission 

 Your tasks... 

Write a Matlab script and save it to a file named test1.m. Demonstrate in the script file how you 
generate a hybrid image using two input images. Inspect the hybrid image at different distances. 
Adjust the values c and n of your low-pass and high-pass filters until the hybrid image reveals either 
input image when viewed at different distances.Your Matlab script should read in two input images, call 
the lowpassfilter.m and highpassfilter.m functions and construct the resultant image. Your code 
should display the resultant image. When we mark your lab exercises, we will run your Matlab script 
and inspect the display. Apart from the resultant hybrid image, display intermediate images as well 
such as those shown in the example above to demonstrate your understanding of the hybrid image 
construction process. 

 

Repeat the same process above for another pair of input images. Save the Matlab script to test2.m. 

 

 Submission Requirements: Submit to cssubmit the following as a single zip file: 

1. your test1.m script file. 

2. your test2.m script file. 

3. your own image pairs (other than the sample ones supplied) that you use in test1.m and test2.m. 

 

Ensure that your submission is complete and also includes any other functions that you have used 
such as the lowpassfilter.m and highpassfilter.m from Prof. Kovesi's website 
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Summary 

 Images as 2-D signals 

 Linear and non-linear filters 

 Convolution 

 Fourier Series and Fourier Transform 

 Discrete Fourier Transform 
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