
Adaptive Particle Swarm Optimisation for High-Dimensional Highly Convex
Search Spaces

Dean Tsou and Cara MacNish
School of Computer Science & Software Engineering

The University of Western Australia
35 Stirling Hwy, Crawley WA 6009

tsoud01@csse.uwa.edu.au, cara@csse.uwa.edu.au

Abstract- The Particle Swarm Optimisation (PSO) algo-
rithm has been established as a useful global optimisa-
tion algorithm for multi-dimensional search spaces. A
practical example is its success in training feed-forward
neural networks. Such successes, however, must be
judged relative to the complexity of the search space.

In this paper we show that the effectiveness of the
PSO algorithm breaks down when extended to high-
dimensional “highly convex” search spaces, such as
those found in training recurrent neural networks. A
comparative study of backpropagation methods reveals
the importance of an adaptive learning rate to their suc-
cess. We briefly review the physics of the particle swarm
optimiser, and use this view to introduce an analogous
adaptive time step. Finally we demonstrate that the new
adaptive algorithm shows improved performance on the
recurrent network training problem.

Keywords: Particle Swarm Optimisation, Recurrent Neural
Network, Regular Languages, Adaptive Learning Rate.

1 Introduction

The Particle Swarm Optimisation (PSO) algorithm has been
established as a useful global optimisation algorithm for
multi-dimensional search spaces, comparing well with other
approaches such genetic algorithms. A practical example is
its success in training feed-forward neural networks.

Neural network training has traditionally been carried
out using the backpropagation (BP) gradient descent algo-
rithm (Rumelhart, Williams & Hinton 1986). This tech-
nique has proved to be effective for training feed-forward
neural networks (FFN) which use summation unit functions
and continuously differentiable transfer functions. However
its application is limited in more complex networks.

Recently, global optimisation techniques have been
used to train neural networks as they are applicable to a
wider variety of networks such as Product Unit Networks
(PUNN) (Ismail & Engelbrecht 2000), networks with ar-
bitrary transfer functions, and recurrent neural networks
(RNN) (Elman 1990). The Particle Swarm Optimisation
(PSO) algorithm, for example, has been widely studied
for training FFNs (El-Gallad, El-Hawary, Sallam & Kalas
2001, Mendes, Cortez, Rocha & Neves 2002, van den
Bergh & Engelbrecht 2000, Kennedy & Eberhard 2001) and
has been successfully applied to training product unit net-
works (Ismail & Engelbrecht 2000).

In this paper we investigate the particle swarm opti-
miser’s ability to train RNNs. We show that the complex

search space generated by RNNs raises difficulties that ren-
der the traditional PSO algorithm ineffective, and present
a refined version of the particle swarm optimiser that suc-
ceeds where the traditional algorithm fails.

In Section 2 we briefly review the particle swarm model.
Section 3 introduces the application domain — recurrent
neural networks and the regular grammar learning problem
— and outlines the test cases used in subsequent experi-
ments. Section 4 presents the results of training RNNs us-
ing the traditional PSO algorithm, and makes some conjec-
tures about the nature of the search space and why the PSO
algorithm fails to find suitable solutions. Section 5 revis-
its backpropagation algorithms and presents empirical ev-
idence showing that an adaptive learning rate is critical to
their success in this space. Section 6 describes our new ver-
sion of the PSO, APSO, which incorporates an analogous
adaptive component. The improved results from applying
this algorithm are presented in Section 7, and Section 8 con-
cludes the paper.

2 The Particle Swarm Model

The PSO algorithm was originally inspired by animal group
behaviour, particularly bird flocking and fish schooling.
Kennedy & Eberhart (1995) suggested that “social sharing
of information among conspeciates offers an evolutionary
advantage”. For example, when one member of a flock of
birds lands at a source of food, other members will modify
their flight paths and tend to converge around the successful
individual, increasing their own chances of success.

The PSO algorithm seeks to utilise this principle to
find good solutions to global optimisation problems. A
population of potential solutions “flies” through a multi-
dimensional solution space, with each member of the popu-
lation continually adjusting its position and velocity accord-
ing to its own experience (or fitness) and the experience of
other members of the population. The result is the appear-
ance that a population of particles seem to move together,
yet each particle has a randomness associated with its be-
haviour (Ismail & Engelbrecht 2000). (Some versions of
the PSO algorithm use velocity capping to ensure conver-
gence. The result is that the population appears more like
a swarm of insects than a flock of birds, hence the name
PSO.)

Ideally the population will converge on an optimal (or
at least “good”) solution. However this is not always the
case. We will show that for the high-dimensional problem
of RNN training the traditional PSO algorithm fails to find
acceptable solutions.

In the basic version of the PSO algorithm each particle
in the population manipulated according to the following
assignment statements:

�������� � �	��
������ �	��
��� (1)� ���� � � �	��
�������
������������ �!�"�$# � ���&% � � ��� ��"�(' �*)+������� ���"�$# �, � % � � ��� � (2)

Here � � ��� and � ���� are the � th dimensional component of the
position and velocity of the - �/. particle at time step 0 . # � ��� is
the � �/. component of the best (fittest) position the - �/. par-
ticle has accomplished by time step 0 , and # �, � is the � �/.
component of the global best position achieved in the pop-
ulation by time step 0 .

The constants �
 and � ' are known as the “cognition”
and “social” factors respectively as they control the relative
strengths of individualistic and collective behaviour of each
particle. Finally, ��������� � and)+������� � are two different ran-
dom numbers in the range of 0 to 1 and are used to enhance
the exploratory nature of the PSO.

3 The Problem Domain

3.1 Recurrent Neural Networks

A neural network is a network of nodes (neurons) connected
via unidirectional links, each with an associated weight. In
a feed-forward network, neurons are arranged into layers,
with neurons from layer l feeding signals forward typically
to neurons in layer l+1. Eventually the signal propagates
to the neurons in the output layer. Individual neurons take
the values on their input links, process them according to
a unit and transfer function, and send the results to their
output links. The unit function combines input signals into
one signal, and the transfer function uses the combined in-
put signal to determine the neuron’s output value. We will
use networks with summation unit functions and logarith-
mic sigmoid transfer functions (Haykin 1994).

A feed-forward network implements a non-linear func-
tion from an input vector to an output vector. By contrast,
recurrent neural networks typically process sequences of in-
put vectors, producing a corresponding sequence of output
vectors. The output vector at any given step1 in the sequence
is a function of the current input and previous inputs.

In a recurrent neural network the output values from each
node of a layer l at step i are stored and fed back into the
network as input into nodes of layer l or lower, at step i+1.
These links are called recurrent (or feedback) links, and the
data that they provide for the next step can be viewed as
memory of the network’s state.

Sometimes, a context layer is introduced to assist in vi-
sualisation, as shown in Figure 1. The output from each
node of a hidden layer l is fed into a corresponding context
layer neuron. The context layer neurons then feed this value
back into hidden layer l or lower at the next step. If the re-
current network is visualised in this manner, it is important

1We will use the term step for each successive input to an RNN from
a sequence, to avoid confusion with iterations in the PSO, each of which
evaluates an entire sequence.

hidden
layer layer

context

Figure 1: A portion of an RNN. The circles represent neu-
rons. The dotted lines indicated connections from the pre-
vious layer, and to the subsequent layer. The dashed lines
indicate storage from the hidden layer to the context layer
(and have a weight of 1.) The solid lines are recurrent links.

to note that a link from the hidden layer to the context layer
has a constant weight of 1 and is not altered in the training
process. The recurrent links are the links from the context
layer to the hidden layer. Recurrent links, like feed-forward
links, have variable weights associated with them.

3.2 Applying the PSO to RNNs

The most common method of training neural networks in-
volves adjusting link weights. In such training scenarios, we
can view a network at any given time as a point (or vector)
in a network solution space. The solution space contains a
mapping from the values of a network’s weights to the value
of the network’s fitness. In supervised training, the fitness
is usually an error value calculated as some function of the
network’s output vector and a vector of desired output val-
ues. The goal of training is to locate an optimal (or close to
optimal) point in the solution space, minimising the error.

Using the PSO algorithm, each “particle” consists of
a vector representing a weighted neural network. Thus
one can think of the algorithm as “flying” over the multi-
dimensional error surface looking for good network solu-
tions.

The PSO has shown potential in optimising many ap-
plications for FFNs. It has the advantage of not becoming
easily trapped in local minima, being exploratory, and it is
simple to implement. Furthermore, the PSO does not im-
pose a restraint on the type of transfer functions, unlike gra-
dient descent methods such as backpropagation. The PSO
has also been demonstrated to work effectively in optimis-
ing PUNNs, despite the solution space being extremely con-
voluted (Ismail & Engelbrecht 2000).

3.3 Learning Regular Language Rules

Regular Language prediction is a common benchmarking
application for assessing the effectiveness of a training
method for RNNs and will be used as the application do-

C Vl I H B V
b 1 0 1 0 0 1
d 1 0 1 1 0 1
g 1 0 1 0 1 1
a 0 1 0 0 1 1
i 0 1 0 1 0 1
u 0 1 0 1 1 1

Table 1: This table defines the alphabet of our regular lan-
guage as binary strings. For the interpretation of each col-
umn refer to Elman (1990).

main in this paper. Regular languages consist of words or
sequences that can be constructed from an alphabet of sym-
bols according to a set of rules known as a regular grammar.

We will demonstrate our results using a simple regular
language defined by Elman (Elman 1990) and used by sub-
sequent authors. The alphabet of the language consists of
the letters b, d, g, a, i, u, each represented by a 6 bit vec-
tor shown in Table 1. (Each bit has a phonetic significance.
Refer to Elman (1990) for further details.)

These 6 letters are combined according to the following
set of rules:

1 b must be followed by an a;

1 d must be followed by two i’s;
1 g must be followed by three u’s.

In the prediction task, at each step successive vectors
(letters) from a sequence conforming to these rules are ap-
plied to the inputs. The outputs should represent the next
vector (letter) in the sequence. The task of the PSO is to
train (or, more accurately, find) a network that succeeds at
the prediction task.

Elman trained an RNN to learn these language rules us-
ing conventional gradient descent techniques (Elman 1990).
RNNs are thus known to be capable of performing such a
task.

3.4 Test Cases

To give an accurate assessment of the effectiveness of the
PSO in training RNNs we require a test set with several
grades of difficulty. In the sequence prediction task, this
can be achieved by varying the amount of “history” that the
network must take into account in making a correct predic-
tion. Intuitively this can be thought of as the amount that it
must “remember”.

In the experiments that follow we use the following test
sequences, listed as input/output pairs in order of increasing
complexity.

1 (diib,iiba): This is the simplest case we examine. The
RNN has to learn that d is followed by an i and b is
followed by an a. In addition to learning these simple
rules (which require no “memory” of the sequence),
it must also learn that i is followed by an i when it
is preceded by a d, but it is followed by a b when it
is preceded by another i. This requires that the RNN

uses information from the previous time step as input
for the current time step.

1 (diibaguuub,iibaguuuba): Here the RNN must learn
the rules associated with diib, and it must also learn
two additional complex rules. Firstly, if u is only pre-
ceded by a single u, then another u must succeed it.
Secondly, if u is preceded by two us, then b should
succeed it. In this instance, the RNN must learn to
“look back” two time steps.

1 (diibaguuubadiidiiguu,iibaguuubadiidiiguuu): This
final sequence embodies the three rules of our reg-
ular language example. For the RNN to learn this
sequence, not only must the RNN learn the rules as-
sociated with diibaguuub, it must also learn that i is
not necessarily followed by b if it is preceded by an-
other i. Similarly, u is not necessarily followed by a
b if it was preceded by two other us. Also, a is not
necessarily followed by a g.

4 Case Study I: Training RNNs with the PSO

To assess the ability of the PSO as a training algorithm for
RNNs, we trained the RNN on each sequence of our regular
language as outlined below.

4.1 Method

4.1.1 Parameters

For comparability with Elman (1990) we used the same size
networks containing 20 hidden nodes. Note that the num-
ber of weights, and therefore the dimension of the solution
space and length of a solution vector, increases quadrati-
cally with the number of hidden nodes.

We used a population size of 50 and a maximum number
of iterations of 5000. Each experiment was repeated over 4
trials (which was limited by computing resources).

Both the cognitive factor and social factor were set at the
standard value of 2 (Kennedy & Eberhart 1995). Through-
out this particular experiment, velocity capping (Clerc &
Kennedy 2002) was used to restrict each individual velocity
component such that the magnitude of the overall velocity
does not exceed 5.

4.1.2 Fitness Function

As our fitness (minimisation) function we used the average
mean squared error (MSE), calculated by finding the MSE
of each letter in the sequence and averaging the result. We
defined a good solution as achieving an average MSE of less
than 0.001.

4.2 Results

For each sequence described in Section 3.3, data were col-
lected on success or failure, the number of epochs (itera-
tions) used before a good solution was found or no signif-
icant improvement was observed, and best error achieved.
Failure in training occurs if training runs over the maximum

Table 2: Summary of results from 4 training runs using the
original PSO on the string diib.

Run Result Best Error Iterations
1 Success 243 57698;:=<>8 �@? 102
2 Success 243 87892;:=<>8 �@? 95
3 Success 643 29A75;:=<>8 �@? 86
4 Success BC3 2757DE:=<>8 �@? 76

Table 3: Summary of results from 4 training runs using the
original PSO on the string diibaguuub.

Run Result Best Error Iterations
1 Success 643$B�FCBG:=<>8 �@? 369
2 Failure D�3 89H72I:=<>8 � '

527
3 Failure 543 87595I:=<>8 �KJ 382
4 Failure 643 D9F92I:=<>8 �KJ 326

allowable epoch, 5000, without reaching an error rate of less
than 0.001. Summaries of results are shown in Tables 2, 3,
and 4.

From the results it can be seen that whilst the PSO effi-
ciently solved the learning problem on shorter strings with
simple rules such as diib, it performed poorly and in the
majority of cases failed to find an acceptable solution on the
strings with more complex rules.

4.3 Discussion

It should be noted that in cases of failure the algorithm
did not make any significant improvement after a relatively
small number of iterations. Thus increasing the allowable
number of epochs is unlikely to improve performance.

One obvious hypothesis for the poor performance is that
the population is simply converging on a local minimum
that is “out of reach” of a better solution. However this
does not appear to be the case for a number of reasons.
First, increasing the “exploratory” nature of the algorithm
(for example by giving high random weightings to com-
ponent terms) did not produce an improvement in perfor-
mance. Secondly, and perhaps more importantly, gradient
descent methods such as those used by Elman have been
able to find satisfactory solutions in this space (from ran-
dom starting positions). This suggests that sufficient solu-
tions are available in the space, but the PSO algorithm is
failing to converge on them.

It is not possible to directly visualise the error function
surface within the solution space due to its high dimension-

Table 4: Summary of results from 4 training runs using the
original PSO on the string diibaguuubadiidiiguu.

Run Result Best Error Iterations
1 Failure 643 87896I:=<>8 � '

301
2 Failure 543 6729FI:=<>8 � '

213
3 Failure 543 F7298I:=<>8 � '

415
4 Failure D�3�<>29FI:=<>8 � '

312

−20
−10

0
10

20
30

−30

−20

−10

0

10

20
0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 2: An error surface plot of two recurrent links’ (the
recurrent links connecting the first and second hidden nodes
to themselves) weights around a solution minimum.

−30
−20

−10
0

10
20

−30

−20

−10

0

10

20
4

5

6

7

8

9

10

11

12

x 10−6

Figure 3: An error surface plot of two recurrent links’ (the
recurrent links connecting the sixteenth and seventeenth
hidden nodes to the first hidden node) weights around a so-
lution minimum.

ality — in this case over 500 dimensions. However, slices
of the function can give us some clues as to its behaviour.

To examine the surface we first found solutions for the
complex strings using gradient descent (backpropagation)
methods. We were then able to fix all but two weights. Fig-
ures 2 and 3 show illustrative three dimensional slices (two
weights plus error function value) from of the error surface
around a solution minimum. They are plotted by sampling
20 points, with a step size of 1 between each point, on either
side of the solution minimum in both dimensions.

Both figures show broad flat planar regions and steep
steps. This supports a conjecture, proposed by Magoulas,
Vrahatis & Androulakis (1999), that the solution space con-
sists of vast areas of flat regions joined with narrow steep
ones. Intuitively this would make sense, since the unit func-
tions used in our RNNs are sigmoid functions which have
characteristics close to a step function. Therefore, by com-
bining so many neurons with sigmoid transfer functions,
there are likely to be regions where the steps effectively
overlap (recalling that the particles vary in all dimensions
in each iteration), causing sharp steepness.

We will adopt the terminology highly convex for such
functions2 in contrast, for example, to concave functions
typified by De Jong’s “bowl” function F1 (De Jong 1975)
commonly used to compare genetic algorithms.

A steep region around a solution minimum suggests that

2One can imagine a marble rolling over a (relatively flat) convex hull
before descending steeply into a minimum.

Table 5: This table summarises the results from 50 training
runs using each type of backpropagation method to train an
RNN on the string diibaguuubadiidiiguu.

Training Method Successes
BPM 0
BPALR 50
BPMALR 50

the particles may be “flying” directly over these positions.
This area, although the most important, may get relatively
little exploration by the swarm. If the valleys are very steep,
the probability of a particle stumbling into it in the high di-
mensional solution space may be very low. (It should be
borne in mind that the population size is small compared
to the number of dimensions. Also, since the fitness func-
tion combines fitness over all dimensions, a particle has no
way of “knowing” whether its performance is improving in
a certain dimension.)

5 The Importance of Adaptive Learning Rates

This conjecture about the difficulty of descending the error
function caused us to look more systematically at the ap-
parent success of backpropagation methods. In doing so we
found that different variants of the backpropagation algo-
rithm had markedly different success rates. As the standard
backpropagation algorithm had poor performance, we ex-
perimented with three enhanced algorithms: Backpropaga-
tion with Momentum (BPM), Backpropagation with Adap-
tive Learning Rate (BPALR), and Backpropagation with
Momentum and Adaptive Learning Rate (BPMALR).

We used each of these training methods to train the RNN
on the regular language string diibaguuubadiidiiguu. Train-
ing with each method took place 50 times, each time record-
ing its success or failure as shown in Table 5

Contrary to our initial predictions, BPM (when not com-
bined with adaptive learning) performed extremely poorly,
failing at every training run. In fact, this experiment pro-
duced a surprising result — that the adaptive learning rate
apparently is the sole critical factor contributing to a suc-
cessful training of RNNs on regular language strings. This
is consistent with Magoulas et al. (1999)’s findings which
showed that the effectiveness of the BP algorithm can be im-
proved via the use of an adaptive learning rate when training
applications with a large number of variables.

This result also lent support to the conjecture that the er-
ror space around a solution minimum is a very steep region.
At a region of steepness, the learning rate can be adjusted so
that the new position does not overshoot the solution mini-
mum. If indeed this conjecture is correct, it should be possi-
ble to similarly improve the PSO by introducing the concept
of an adaptive learning rate into the algorithm.

6 Improving the Particle Swarm Optimiser

Incorporating the notion of learning rate into the PSO al-
gorithm requires some refinement of its original structure.

From the perspective of physics, equations (1) and (2) can
be regarded as a discretised version of Newton’s laws of
motion, with a unit time step, and accelerating forces pro-
portional to the distances of the particle from its own and
the group’s best positions.

Rewriting with an explicit representation of the acceler-
ation, � � ��� , and time step, � 0 , we have:

� � ��� � �
 ����������� �!�"�$# � ��� % ������ ��"� ' �*)+������� ���"�$# �, � % ������ � (3)
� �ML � ���� � � ���� � � � ��� �*� 0 (4)

� �ML � ���� � ������ ��� ���� ��� 0 � � � ��� �*� 0 '
A (5)

Thus the acceleration at each time step is a function of
the particle’s present position, its own best position, and
the global best position achieved so far. The velocity and
projected position equations are essentially kinematic equa-
tions of constant acceleration.

The motivation for this representation of the PSO is that
the introduction of an explicit time step, � 0 , is analogous to
a learning rate as it controls how much change is to occur
with each iteration.

If this variation were implemented without velocity cap-
ping, the swarm would eventually lose cohesion in much
the same way as the original PSO. However, there is a more
elegant method of keeping cohesion than by the use of ve-
locity capping. In keeping with the philosophy of viewing
the PSO from a physical point of view, we can introduce
the idea of friction into the swarm world. This can act as a
dampening factor to help keep the swarm in cohesion. Since
the particles in the swarm essentially move with spring like
behaviour, we introduce a spring retarding force which is
proportional to its velocity, but acts in the opposite direc-
tion (Serway 1990). That is, NPO � , and since NPO � by
Newton’s Law, we can conclude that � �RQ � � , where Q is a
negative constant coefficient of friction (dampening factor).
Taking into account all modifications, our final version of
the PSO is represented by equations 6, 7, and 8:

� � ��� � �
 ����������� �!�"�S# � ��� % ������ ��"� ' �*)+������� ���"�$# �, � % ������ � � Q � � ���� (6)
� �ML � ���� � � ���� � � � ��� �*� 0 (7)

� �ML � ���� � � � ��� �T� ���� �*� 0 � � � ��� �*� 0 '
A (8)

We can now introduce adaptive “learning” rates by mod-
ifying � 0 . The approach we take follows that of Magoulas
et al. (1999). Each particle in the population keeps its own
learning rate (or time-step), which is adjusted according to
the algorithm presented in Figure 4.

In this algorithm, like backpropagation with adaptive
learning rate, at each step a new position and its error are
calculated. The new position will only be accepted if the
error of the new position is at most max_err_inc times the
error of the old position. If the new position is rejected,
the step size is decremented by a factor of step_dec. Note
that we also decrement the velocity by the same factor un-

Initialise population
Determine best particle in population
While (exit criteria not met) {

For each particle x {
Calculate acceleration at t
Calculate velocity at t+dt
Calculate position at t+dt
If (error(position at t+dt)

< error(position)) {
position = position at t+dt
velocity = velocity at t+dt
step(x) = step_inc * step(x)

} Else {
If (error(position at t+dt)/

error(position)
< max_err_inc) {

position = position at t+dt
velocity = velocity at t+dt

} Else {
step(x) = step_dec * step(x)
velocity = step_dec * velocity

}
}

}
}

Figure 4: Algorithm for PSO with adaptive time step.

Table 6: Summary of the results from 4 training runs using
the APSO on the string diib.

Run Result Best Error Iterations
1 Success 243$BUA9AI:=<>8 �@? 338
2 Success 243 2�B7HI:=<>8 �@? 167
3 Failure D�3�<>FCBV:=<>8 � '

175
4 Success 243 27898;:=<>8 �@? 81

der these conditions to prevent the old velocity value dom-
inating the contribution to the new velocity value. For the
remainder of this paper, we will refer to this algorithm as
the Adaptive Particle Swarm Optimiser (APSO).

7 Case Study II: Training RNNs with the
APSO

The regular language problem as described in Section 3.3 is
used again here to compare the effectiveness of the adap-
tive PSO with the PSO. The experiments were run with
the same parameterisation and fitness function, described
in Section 4.

The results are shown in Tables 6, 7, and 8.

7.1 Discussion

While this is a small-scale empirical study, the results are
promising, showing a substantial improvement over the
conventional PSO. The APSO succeeded in training on
the string diibaguuubadiidiiguu in 50% of cases, while the

Table 7: Summary of the results from 4 training runs using
the APSO on the string diibaguuub.

Run Result Best Error Iterations
1 Success 243 27F95I:=<>8 �@? 1092
2 Success 243 29H9AV:=<>8 �@? 1089
3 Success 243 D98CBG:=<>8 �@? 1287
4 Success 243 67298I:=<>8 �@? 872

Table 8: Summary of results from 4 training runs using the
APSO on the string diibaguuubadiidiiguu.

Run Result Best Error Iterations
1 Failure <73WAX<Y5I:=<>8 �KJ 3544
2 Success 243 276CBG:=<>8 �@? 3630
3 Success 243 27892I:=<>8 �@? 2733
4 Failure F43 87692I:=<>8 � '

5000

PSO failed every time. The string diibaguuub was suc-
cessfully trained on all occasions while the PSO only man-
aged one success of its four training runs. Although the
APSO showed significant improvement over the PSO on the
complex strings, it actually performed worse on the simple
string diib, failing once while the PSO did not have any fail-
ures. The reason for this is not known, and requires further
investigation.

As we can see, training with the APSO presents a higher
success rate than the PSO, especially on more complex
strings. It can be seen that the APSO tends to require more
iterations to converge on solutions than the PSO, however it
should be noted that the PSO tended to fail prematurely so
the number of iterations is not directly comparable.

8 Conclusion

While the PSO may be suitable for many optimisation prob-
lems, we have shown that for the task of training RNNs to
learn regular language strings the standard PSO performs
inadequately. We have conjectured that the algorithm is
not well suited to high-dimensional highly convex solution
spaces. Since success in these spaces has been achieved pre-
viously using backpropagation methods, we examined these
approaches to see what features made them successful. The
results indicated that an adaptive learning rate was the criti-
cal factor.

We have presented a new version of the particle swarm
algorithm, adaptive PSO, that contains an analogous mech-
anism to an adaptive learning rate. In this algorithm the
duration of the time step (and hence distance) is varied ac-
cording to performance. This algorithm shows substantially
improved performance when training RNNs to learn more
complex regular language strings.

As we believe the major contributing factor to the im-
proved performance of the APSO is the reduced step size of
each particle when it is around a minimum, it would be in-
teresting to compare its performance against the PSO with
constriction factor (Clerc & Kennedy 2002).

Bibliography

Clerc, M. & Kennedy, J. 2002, ‘The particle swarm—
explosion, stability, and convergence in a multidimen-
sional complex space’, IEEE Transactions on Evolu-
tionary Computation 6(1).

De Jong 1975, Analysis of the behaviour of a class of
genetic adaptive systems, PhD thesis, Department of
Computer and Communication Sciences, University
of Michigan, Ann Arbor, MI.

El-Gallad, A. I., El-Hawary, M., Sallam, A. A. & Kalas, A.
2001, Swarm-intelligently trained neural network for
power transformer protection, in ‘Canadian Confer-
ence on Electrical and Computer Engineering, 2001’,
Vol. 1, pp. 265–269.

Elman, J. L. 1990, Finding structure in time, in ‘Cognitive
Science’, Vol. 14, pp. 179–211.

Haykin, S. 1994, Neural Networks, Prentice Hall Inc.

Ismail, A. & Engelbrecht, A. 2000, Global optimization al-
gorithms for training product unit neural networks, in
‘International Joint Conference on Neural Networks
IJCNN’2000’, Vol. 1, IEEE Computer Society, Los
Alamitos, CA, pp. 132–137.

Kennedy, J. & Eberhard, R. 2001, Swarm Intellegence, Mor-
gan Kaufmann Publishers.

Kennedy, J. & Eberhart, R. 1995, Particle swarm optimiza-
tion, in ‘1995 Proceedings, IEEE International Con-
ference on Neural Networks’, Vol. 4, IEEE, pp. 1942–
1948.

Magoulas, G., Vrahatis, M. & Androulakis, G. 1999, ‘Im-
proving the convergence of the backpropagation algo-
rithm using learning rate adaptation methods’, Neural
Computation 11, 1769–1796.

Mendes, R., Cortez, P., Rocha, M. & Neves, J. 2002, Parti-
cle swarm for feedforward neural network training, in
‘Proceedings of the 2002 International Joint Confer-
ence on Neural Networks’, Vol. 2, pp. 1895–1899.

Rumelhart, D. E., Williams, R. J. & Hinton, G. E. 1986,
‘Learning internal representations by error propaga-
tion’, Parallel Distributed Processing: Explorations in
the Microstructure of Cognition 1, 318–362.

Serway, R. A. 1990, PHYSICS For Scientists & Engineers
with Modern Physics Third Edition, Saunders College
Publishing, chapter 13, p. 341.

van den Bergh, F. & Engelbrecht, A. 2000, ‘Cooperative
learning in neural networks using particle swarm opti-
mizers’, South African Computer Journal 26, 84–90.

