
Artificial Intelligence

Topic 9

Planning

3 Search vs. planning

3 Planning Languages and STRIPS

3 State Space vs. Plan Space

3 Partial-order Planning

Reading: Russell & Norvig, Chapter 11

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 1

1. Search vs. Planning

Consider the task get milk, bananas, and a cordless drill

Standard search algorithms seem to fail miserably:

. . .

Buy Tuna Fish

Buy Arugula

Buy Milk

Go To Class

Buy a Dog

Talk to Parrot

Sit Some More

Read A Book

...

Go To Supermarket

Go To Sleep

Read A Book

Go To School

Go To Pet Store

Etc. Etc. ...

Sit in Chair

Start

Finish

After-the-fact heuristic/goal test inadequate

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 2

1. Search vs. Planning

Planning systems do the following:

1. open up action and goal representation to allow selection

2. divide-and-conquer by subgoaling

3. relax requirement for sequential construction of solutions

Search Planning

States internal state of Java objects descriptive (logical) sentences

Actions encoded in Java methods preconditions/outcomes

Goal encoded in Java methods descriptive sentence

Plan sequence from s0 constraints on actions

⇒ implicit ⇒ explicit

⇒ hard to decompose ⇒ easier to decompose

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 3

2. Planning Languages and STRIPS

Require declarative language — declarations or statements about
world.

Range of logics have been proposed — best descriptive languages
we have, but can be difficult to use in practice.

more descriptive power → more difficult to compute (reason)
automatically

STRIPS (STanford Research Institute Problem Solver) first to
suggest suitable compromise

• restricted form of logic

• restricted language ⇒ efficient algorithm

Basis of many subsequent languages and planners.

States

At(Home), ¬ Have(Milk), ¬ Have(Bananas), ¬ Have(Drill)

(conjunctions of function-free ground literals)

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 5

2. Planning Languages and STRIPS

Goals

At(Home), Have(Milk), Have(Bananas), Have(Drill)

Can have variables

At(x), Sells(x,Milk)

(conjunctions of function-free literals)

Actions

Action (Name): Buy(x)
Precondition: At(p), Sells(p, x)
Effect: Have(x)

(Precondition: conjunction of positive literals
Effect: conjunction of literals)

Have(x)

At(p) Sells(p,x)

Buy(x)

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 7

3. State Space vs. Plan Space

Standard search: node = concrete world state
Planning search: node = partial plan

Definition: open condition is a precondition of a step not yet
fulfilled

Operators on partial plans, eg:

• add a step to fulfill an open condition

• order one step wrt another

• instantiate an unbound variable

Gradually move from incomplete/vague plans to complete, cor-
rect plans

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 8

4. Partial-order planning

Example

Goal: RightShoeOn, LeftShoeOn

Operators:
Op(Action: RightShoe, Precond: RightSockOn, Effect: RightShoeOn)

Op(Action: RightSock, Effect: RightSockOn)

Op(Action: LeftShoe, Precond: LeftSockOn, Effect: LeftShoeOn)

Op(Action: LeftShoe, Effect: LeftShoeOn)

Consider partial plans:

1. LeftShoe, RightShoe — ordering unimportant

2. RightSock, RightShoe — ordering important

3. RightSock, LeftShoe, RightShoe — ordering between some
actions important

partial order planner ⇒ planner that can represent steps in
which some are ordered (in sequence) and others not (in “paral-
lel”)

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 9

4. Partial-order planning

LeftSockOn RightSockOn

LeftShoeOn, RightShoeOn

Start

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Finish

Finish

Start

LeftShoeOn, RightShoeOn

least commitment planner — partial order planner that delays
commitment to order between steps for as long as possible

⇒ less backtracking

A plan is complete iff every precondition is achieved

A precondition is achieved iff it is the effect of an earlier step
and no possibly intervening step undoes it

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 10

4. Partial-order planning

linearisation — obtaining a totally ordered plan from a partially
ordered plan by imposing ordering constraints

StartStartStart

Total Order Plans: Partial Order Plan:

Start

Left

Sock

Left

Shoe

Sock

Right

Shoe

Right

Finish

Start

Finish

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Start

Left

Sock

Shoe

Right

Finish

Right

Sock

Left

Shoe

Finish

Sock
Left

Right

Sock

Shoe
Left

Right

Shoe

Shoe

Right

Finish

Sock

Right

Left

Sock

Left

Shoe

Finish

Sock
Right

Shoe
Left

Left

Sock

Right

Shoe

LeftSockOn RightSockOn

LeftShoeOn, RightShoeOn

Start

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Finish

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 11

4. Partial-order planning

In addition to orderings we must record

• variable bindings: eg. x = LocalStore

• causal links: Si
c−→ Sj (Si achieves precondition c for Sj)

Thus our initial plan might be:

Plan(Steps:{ S1: Op(Action: Start),
S2: Op(Action: Finish,

Precond: RightShoeOn, LeftShoeOn)},
Orderings: { S1 ≺ S2 },
Bindings: {},
Links: {})

Algorithm · · ·;

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 12

4.1 POP algorithm sketch

function POP(initial, goal, operators) returns plan

plan←Make-Minimal-Plan(initial, goal)

loop do

if Solution?(plan) then return plan

Sneed, c←Select-Subgoal(plan)

Choose-Operator(plan, operators,Sneed, c)

Resolve-Threats(plan)

end

function Select-Subgoal(plan) returns Sneed, c

pick a plan step Sneed from Steps(plan)

with a precondition c that has not been achieved

return Sneed, c

continued. . .

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 13

4.1 POP algorithm sketch

procedure Choose-Operator(plan, operators,Sneed, c)

choose a step Sadd from operators or Steps(plan) that has c as an

effect

if there is no such step then fail

add the causal link Sadd
c−→ Sneed to Links(plan)

add the ordering constraint Sadd ≺ Sneed to Orderings(plan)

if Sadd is a newly added step from operators then

add Sadd to Steps(plan)

add Start ≺ Sadd ≺ Finish to Orderings(plan)

procedure Resolve-Threats(plan)

for each Sthreat that threatens a link Si
c−→ Sj in Links(plan) do

choose either

Demotion: Add Sthreat≺ Si to Orderings(plan)

Promotion: Add Sj ≺ Sthreat to Orderings(plan)

if not Consistent(plan) then fail

end

POP is sound, complete, and systematic (no repetition)

Extensions for more expressive languages (eg disjunction, etc)

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 15

4.2 Clobbering and promotion/demotion

A clobberer is a potentially intervening step that destroys the
condition achieved by a causal link. E.g., Go(Home) clobbers
At(HWS):

At(HWS)

Finish

At(Home)

At(Home)

Go(Home)

Buy(Drill)

Go(HWS)

DEMOTION

PROMOTION

Demotion: put before Go(HWS)

Promotion: put after Buy(Drill)

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 16

4.3 Example: Blocks world

Start State Goal State

B A

C

A

B

C

PutOn(x,y)

Clear(x) On(x,z) Clear(y)

~On(x,z) ~Clear(y)
 Clear(z) On(x,y)

PutOnTable(x)

Clear(x) On(x,z)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

"Sussman anomaly" problem

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 17

4.3 Example: Blocks world

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 18

4.3 Example: Blocks world

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 19

4.3 Example: Blocks world

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 20

4.3 Example: Blocks world

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

PutOnTable(C)

On(C,z) Cl(C)

PutOn(B,C)
clobbers Cl(C)
=> order after
PutOnTable(C)

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 21

The End

c© Cara MacNish. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Planning Slide 22

