
Artificial Intelligence

Topic 8

Reinforcement Learning

3 passive learning in a known
environment

3 passive learning in unknown
environments

3 active learning

3 exploration

3 learning action-value functions

3 generalisation

Reading: Russell & Norvig, Chapter 20, Sections 1–7.

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 193

1. Reinforcement Learning

Previous learning examples

• supervised — input/output pairs provided

eg. chess — given game situation and best move

Learning can occur in much less generous environments

• no examples provided

• no model of environment

• no utility function

eg. chess — try random moves, gradually build model of
environment and opponent

Must have some (absolute) feedback in order to make decision.

eg. chess — comes at end of game

⇒ called reward or reinforcement

Reinforcement learning — use rewards to learn a successful agent
function

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 194

1. Reinforcement Learning

Harder than supervised learning

eg. reward at end of game — which moves were the good
ones?

. . . but . . .

only way to achieve very good performance in many complex
domains!

Aspects of reinforcement learning:

• accessible environment — states identifiable from percepts

inaccessible environment — must maintain internal state

• model of environment known or learned (in addition to utili-
ties)

• rewards only in terminal states, or in any states

• rewards components of utility — eg. dollars for betting agent

or hints — eg. “nice move”

• passive learner — watches world go by

active learner — act using information learned so far, use prob-
lem generator to explore environment

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 195

1. Reinforcement Learning

Two types of reinforcement learning agents:

utility learning

• agent learns utility function

• selects actions that maximise expected utitility

Disadvantage: must have (or learn) model of environment —
need to know where actions lead in order to evaluate actions and
make decision

Advantage: uses “deeper” knowledge about domain

Q-learning

• agent learns action-value function

— expected utility of taking action in given state

Advantage: no model required

Disadvantage: shallow knowledge

— cannot look ahead

— can restrict ability to learn

We start with utility learning. . .

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 196

2. Passive Learning in a Known Environment

Assume:

• accessible environment

• effects of actions known

• actions are selected for the agent ⇒ passive

• known model Mij giving probability of transition from state i

to state j

Example:

(a)

1 2 3

1

2

3

− 1

+ 1

4

START

−1

+1

.5

.33

.5

.33 .5

.33

.5

1.0
.33

.33

.33

(b)

1.0.5

.5

.5

.5

.5

.5

.5

.5

.33

.33

.33

(a) environment with utilities (rewards) of terminal states
(b) transition model Mij

Aim: learn utility values for non-terminal states

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 197

2. Passive Learning in a Known Environment

Terminology

Reward-to-go = sum of rewards from state to terminal state

additive utilitly function: utility of sequence is sum of rewards
accumulated in sequence

Thus for additive utility function and state s:

expected utility of s = expected reward-to-go of s

Training sequence eg.

(1,1)→(2,1)→(3,1)→(3,2)→(3,1)→(4,1)→(4,2) [-1]

(1,1) →(1,2) →(1,3) →(1,2) →· · · →(3,3) →(4,3) [1]

(1,1) →(2,1) →· · · →(3,2) →(3,3) →(4,3) [1]

Aim: use samples from training sequences to learn (an approxi-
mation to) expected reward for all states.

ie. generate an hypothesis for the utility function

Note: similar to sequential decision problem, except rewards ini-
tially unknown.

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 198

2.1 A generic passive reinforcement learning agent

Learning is iterative — successively update estimates of utilities

function Passive-RL-Agent(e) returns an action

static: U, a table of utility estimates

N, a table of frequencies for states

M, a table of transition probabilities from state to state

percepts, a percept sequence (initially empty)

add e to percepts

increment N[State[e]]

U←Update(U, e, percepts,M,N)

if Terminal?[e] then percepts← the empty sequence

return the action Observe

Update

• after transitions, or

• after complete sequences

update function is one key to reinforcement learning

Some alternatives · · ·;

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 199

2.2 Näıve Updating — LMS Approach

From Adaptive Control Theory, late 1950s

Assumes:

observed rewards-to-go → actual expected reward-to-go

At end of sequence:

• calculate (observed) reward-to-go for each state

• use observed values to update utility estimates

eg, utility function represented by table of values — maintain
running average. . .

function LMS-Update(U, e, percepts,M,N) returns an updated U

if Terminal?[e] then reward-to-go← 0

for each ei in percepts (starting at end) do

reward-to-go← reward-to-go + Reward[ei]

U[State[ei]]←Running-Average(U[State[ei]],

reward-to-go,N[State[ei]])

end

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 200

2.2 Näıve Updating — LMS Approach

Exercise

Show that this approach minimises mean squared error (MSE)
(and hence root mean squared (RMS) error) w.r.t. observed data.

That is, the hypothesis values xh generated by this method min-
imise

∑

i

(xi − xh)
2

N

where xi are the sample values.

For this reason this approach is sometimes called the least mean
squares (LMS) approach.

In general wish to learn utility function (rather than table).

Have examples with:

• input value — state

• output value — observed reward

⇒ inductive learning problem!

Can apply any techniques for inductive function learning — linear
weighted function, neural net, etc. . .

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 201

2.2 Näıve Updating — LMS Approach

Problem:

LMS approach ignores important information
⇒ interdependence of state utilities!

Example (Sutton 1998)

−1

+1

NEW
U = ?

p 0.1~~

p 0.9~~

 OLD
U −0.8~~

New state awarded estimate of +1. Real value ∼ −0.8.

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 202

2.2 Näıve Updating — LMS Approach

Leads to slow convergence. . .

-1

-0.5

0

0.5

1

0 200 400 600 800 1000

U
til

ity
 e

st
im

at
es

Number of epochs

(4,3)

(3,3)
(2,3)

(1,1)
(3,1)

(4,1)
(4,2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000

R
M

S
er

ro
r

in
 u

til
ity

Number of epochs

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 203

2.3 Adaptive Dynamic Programming

Take into account relationship between states. . .

utility of a state = probability weighted average of its
successors’ utilities + its own reward

Formally, utilities are described by set of equations:

U (i) = R(i) +
∑

j
MijU (j)

(passive version of Bellman equation — no maximisation over
actions)

Since transition probabilities Mij known, once enough training
sequences have been seen so that all reinforcements R(i) have
been observed:

• problem becomes well-defined sequential decision problem

• equivalent to value determination phase of policy iteration

⇒ above equation can be solved exactly

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 204

2.3 Adaptive Dynamic Programming

1.0

1 2 3

1

2

3

− 1

+ 1

4

(c)

−0.0380

−0.0380

 0.0886 0.2152

−0.1646

−0.2911

−0.4430

−0.5443 −0.7722

Refer to learning methods that solve utility equations using dy-
namic programming as adaptive dynamic programming (ADP).

Good benchmark, but intractable for large state spaces

eg. backgammon: 1050 equations in 1050 unknowns

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 205

2.4 Temporal Difference Learning

Can we get the best of both worlds — use contraints without
solving equations for all states?

⇒ use observed transitions to adjust locally in line with con-
straints

U (i)← U (i) + α(R(i) + U (j)− U (i))

α is learning rate

Called temporal difference (TD) equation — updates according
to difference in utilities between successive states.

Note: compared with

U (i) = R(i) +
∑

j
MijU (j)

— only involves observed successor rather than all successors

However, average value of U (i) converges to correct value.

Step further — replace α with function that decreases with num-
ber of observations

⇒ U (i) converges to correct value (Dayan, 1992).

Algorithm · · ·;

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 206

2.4 Temporal Difference Learning

function TD-Update(U, e, percepts,M,N) returns utility table U

if Terminal?[e] then

U[State[e]]←Running-Average(U[State[e]],Reward[e],

N[State[e]])

else if percepts contains more than one element then

e′← the penultimate element of percepts

i, j←State[e′], State[e]

U[i]←U[i] + α(N[i])(Reward[e′] + U[j] - U[i])

Example runs · · ·;

Notice:

• values more eratic

• RMS error significantly lower than LMS approach after 1000
epochs

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 207

2.4 Temporal Difference Learning

-1

-0.5

0

0.5

1

0 200 400 600 800 1000

U
til

ity
 e

st
im

at
es

Number of epochs

(4,3)

(3,3)
(2,3)

(1,1)
(3,1)

(4,1)

(4,2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000

R
M

S
er

ro
r

in
 u

til
ity

Number of epochs

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 208

3. Passive Learning, Unknown Environments

• LMS and TD learning don’t use model directly

⇒ operate unchanged in unknown environment

• ADP requires estimate of model

• All utility-based methods use model for action selection

Estimate of model can be updated during learning by observation
of transitions

• each percept provides input/output example of transition func-
tion

eg. for tabular representation of M, simply keep track of per-
centage of transitions to each neighbour

Other techniques for learning stochastic functions — not covered
here.

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 209

4. Active Learning in Unknown Environments

Agent must decide which actions to take.

Changes:

• agent must include performance element (and exploration el-
ement) ⇒ choose action

• model must incorporate probabilities given action — Ma
ij

• constraints on utilities must take account of choice of action

U (i) = R(i) + max
a

∑

j
Ma

ijU (j)

(Bellman’s equation from sequential decision problems)

Model Learning and ADP

• Tabular representation — accumulate statistics in 3 dimen-
sional table (rather than 2 dimensional)

• Functional representation — input to function includes action
taken

ADP can then use value iteration (or policy iteration) algorithms

· · ·;

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 210

4. Active Learning in Unknown Environments

function Active-ADP-Agent(e) returns an action

static: U, a table of utility estimates

M, a table of transition probabilities from state to state

for each action

R, a table of rewards for states

percepts, a percept sequence (initially empty)

last-action, the action just executed

add e to percepts

R[State[e]]←Reward[e]

M←Update-Active-Model(M,percepts, last-action)

U←Value-Iteration(U,M,R)

if Terminal?[e] then percepts← the empty sequence

last-action←Performance-Element(e)

return last-action

Temporal Difference Learning

Learn model as per ADP.

Update algorithm...?

No change! Strange rewards only occur in proportion to proba-
bility of strange action outcomes

U (i)← U (i) + α(R(i) + U (j)− U (i))

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 211

5. Exploration

How should performance element choose actions?

Two outcomes:

• gain rewards on current sequence

• observe new percepts for learning, and improve rewards on
future sequences

trade-off between immediate and long-term good

— not limited to automated agents!

Non trivial

• too conservative ⇒ get stuck in a rut

• too inquisitive ⇒ inefficient, never get anything done

eg. taxi driver agent

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 212

5. Exploration

Example

1 2 3

1

2

3

− 1

+ 1

4

START

0.8

0.10.1

Two extremes:

whacky — acts randomly in hope of exploring environment

⇒ learns good utility estimates

⇒ never gets better at reaching positive reward

greedy — acts to maximise utility given current estimates

⇒ finds a path to positive reward

⇒ never finds optimal route

Start whacky, get greedier?

Is there an optimal exploration policy?

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 213

5. Exploration

Optimal is difficult, but can get close. . .

— give weight to actions that have not been tried often, while
tending to avoid low utilities

Alter constraint equation to assign higher utility estimates to
relatively unexplored action-state pairs

⇒ optimistic “prior” — initially assume everything is good.

Let

U+(i) — optimistic estimate

N(a, i) — number of times action a tried in state i

ADP update equation

U+(i)← R(i) + max
a

f(
∑

j
Ma

ijU
+(j), N(a, i))

where f(u, n) is exploration function.

Note U+ (not U) on r.h.s. — propagates tendency to explore
from sparsely explored regions through densely explored regions

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 214

5. Exploration

f(u, n) determines trade-off between “greed” and “curiosity”

⇒ should increase with u, decrease with n

Simple example

f(u, n) =















R+ if n < Ne

u otherwise

where R+ is optimistic estimate of best possible reward, Ne is
fixed parameter

⇒ try each state at least Ne times.

Example for ADP agent with R+ = 2 and Ne = 5 · · ·;

Note policy converges on optimal very quickly

(wacky — best policy loss ≈ 2.3
greedy — best policy loss ≈ 0.25)

Utility estimates take longer — after exploratory period further
exploration only by “chance”

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 215

5. Exploration

-1

-0.5

0

0.5

1

1.5

2

0 20 40 60 80 100

U
til

ity
 e

st
im

at
es

Number of iterations

(4,3)
(3,3)
(2,3)
(1,1)
(3,1)
(4,1)
(4,2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100R
M

S
er

ro
r,

 p
ol

ic
y

lo
ss

 (
ex

pl
or

at
or

y
po

lic
y)

Number of epochs

RMS error
Policy loss

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 216

6. Learning Action-Value Functions

Action-value functions

• assign expected utility to taking action a in state i

• also called Q-values

• allow decision-making without use of model

Relationship to utility values

U (i) = max
a

Q(a, i)

Constraint equation

Q(a, i) = R(i) +
∑

j
Ma

ij max
a′

Q(a′, j)

Can be used for iterative learning, but need to learn model.

Alternative ⇒ temporal difference learning

TD Q-learning update equation

Q(a, i)← Q(a, i) + α(R(i) + max
a′

Q(a′, j)−Q(a, i))

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 217

6. Learning Action-Value Functions

Algorithm:

function Q-Learning-Agent(e) returns an action

static: Q, a table of action values

N, a table of state-action frequencies

a, the last action taken

i, the previous state visited

r, the reward received in state i

j←State[e]

if i is non-null then

N[a, i]←N[a, i] + 1

Q[a, i]←Q[a, i] + α(r + maxa′ Q[a′, j] − Q[a, i])

if Terminal?[e] then

i← null

else

i← j

r←Reward[e]

a← arg maxa′ f(Q[a′, j], N[a′, j])

return a

Example · · ·;

Note: slower convergence, greater policy loss

Consistency between values not enforced by model.

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 218

6. Learning Action-Value Functions

-1

-0.5

0

0.5

1

0 20 40 60 80 100

U
til

ity
 e

st
im

at
es

Number of iterations

(4,3)
(3,3)
(2,3)
(1,1)
(3,1)
(4,1)
(4,2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100

R
M

S
er

ro
r,

 p
ol

ic
y

lo
ss

 (
T

D
 Q

-l
ea

rn
in

g)

Number of epochs

RMS error
Policy loss

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 219

7. Generalisation

So far, algorithms have represented hypothesis functions as tables
— explicit representation

eg. state/utility pairs

OK for small problems, impractical for most real-world problems.

eg. chess and backgammon → 1050 – 10120 states.

Problem is not just storage — do we have to visit all states to
learn?

Clearly humans don’t!

Require implicit representation — compact representation, rather
than storing value, allows value to be calculated

eg. weighted linear sum of features

U (i) = w1f1(i) + w2f2(i) + · · · + wnfn(i)

From say 10120 states to 10 weights ⇒ whopping compression!

But more importantly, returns estimates for unseen states

⇒ generalisation!!

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 220

7. Generalisation

Very powerful. eg. from examining 1 in 1044 backgammon states,
can learn a utility function that can play as well as any human.

On the other hand, may fail completely. . .

hypothesis space must contain a function close enough to
actual utility function

Depends on

• type of function used for hypothesis

eg. linear, nonlinear (neural net), etc

• chosen features

Trade off:

larger the hypothesis space

⇒ better likelihood it includes suitable function, but

⇒ more examples needed

⇒ slower convergence

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 221

7. Generalisation

And last but not least. . .

x

θ

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 222

The End

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Reinforcement Learning Slide 223

