
Artificial Intelligence

Topic 7

Sequential Decision Problems

3 Introduction to sequential decision
problems

3 Value iteration

3 Policy iteration

3 Longevity in agents

Reading: Russell and Norvig, Chapter 17, Sections 1–3
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1. Sequential decision problems

Previously concerned with single decisions, where utility of each
action’s outcome is known.

This section — sequential decision problems

— utility depends on a sequence of decisions

Sequential decision problems which include utilities, uncertainty,
and sensing, generalise search and planning problems. . .
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1.1 From search algorithms to policies

Sequential decision problems in known, accessible, deterministic
domains

tools — search algorithms

outcome — sequence of actions that leads to good state

Sequential decision problems in uncertain domains

tools — techniques originating from control theory, operations
research, and decision analysis

outcome — policy

policy = set of state-action “rules”

• tells agent what is the best (MEU) action to try in any situa-
tion

• derived from utilities of states

This section is about finding optimal policies.
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1.2 From search algorithms to policies – example

Consider the environment:
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Problem

Utilities only known for terminal states

⇒ even for deterministic actions, depth-limited search fails!

Utilities for other states will depend on sequence (or environment

history) that leads to terminal state.
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1.2 From search algorithms to policies – example

Indeterminism

deterministic version — each action (N,S,E,W) moves one
square in intended direction (bumping into wall results in no
change)

stochastic version
— actions are unreliable. . .

0.8

0.10.1

transition model — probabilities of actions leading to transitions
between states

Ma
ij ≡ P (j|i, a) = probability that doing a in i leads to j

Cannot be certain which state an action leads to (cf . game
playing).

⇒ generating sequence of actions in advance then executing
unlikely to succeed
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1.2 From search algorithms to policies – example

Policies

But, if

• we know what state we’ve reached (accessible)

• we can calculate best action for each state

⇒ always know what to do next!

Mapping from states to actions is called a policy

eg. Optimal policy for step costs of 0.04. . .
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Note: small step cost ⇒ conservative policy (eg. state (3,1))

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Sequential Decision Problems Slide 172





1.2 From search algorithms to policies – example

Expected Utilities

Given a policy, can calculate expected utilities. . .
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0.812

0.655

0.762

0.912

0.705

0.660

0.868

 0.388

Aim is therefore not to find action sequence, but to find optimal
policy — ie. policy that maximises expected utilities.
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1.2 From search algorithms to policies – example

Policy represents agent function explicitly

utility-based agent 7→ simple reflex agent!

function Simple-Policy-Agent(percept) returns an action

static: M, a transition model

U, a utility function on environment histories

P, a policy, initially unknown

if P is unknown then P← the optimal policy given U, M

return P[percept]

Problem of calculating an optimal policy in an accessible,
stochastic environment with a known transition model is called
a Markov decision problem.

Markov property — transition probabilities from a given state
depend only on the state (not previous history)

How can we calculate optimal policies. . . ?
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2. Value Iteration

Basic idea:

• calculate utility of each state U (state)

• use state utilities to select optimal action

Sequential problems usually use an additive utility function (cf .
path cost in search problems):

U ([s1, s2, . . . , sn]) = R(s1) + R(s2) + · · · + R(sn)

= R(s1) + U ([s2, . . . , sn])

where R(i) is reward in state i (eg. +1, -1, -0.04).

Utility of a state (a.k.a. its value):

U (si) = expected sum of rewards until termination
assuming optimal actions

Difficult to express mathematically. Easier is recursive form. . .

expected sum of rewards = current reward
+ expected sum of rewards after taking best action
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2.1 Dynamic programming

Bellman equation (1957)

U (i) = R(i) + max
a

∑

j
Ma

ijU (j)

eg.

U (1, 1) = −0.04
+ max{0.8U (1, 2) + 0.1U (2, 1) + 0.1U (1, 1), up

0.9U (1, 1) + 0.1U (1, 2) left

0.9U (1, 1) + 0.1U (2, 1) down

0.8U (2, 1) + 0.1U (1, 2) + 0.1U (1, 1)} right

One equation per state = n nonlinear equations in n unknowns

Given utilities of the states, choosing best action is just maximum
expected utility (MEU) — choose action such that the expected
utility of the immediate successors is highest.

policy(i) = arg max
a

∑

j
Ma

ijU (j)

Proven optimal (Bellman & Dreyfus, 1962).

How can we solve

U (i) = R(i) + max
a

∑

j
Ma

ijU (j)
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2.2 Value iteration algorithm

Idea

• start with arbitrary utility values

• update to make them locally consistent with Bellman eqn.

• repeat until “no change”

Everywhere locally consistent ⇒ global optimality

function Value-Iteration(M,R) returns a utility function

inputs: M, a transition model

R, a reward function on states

local variables: U, utility function, initially identical to R

U′, utility function, initially identical to R

repeat

U←U′

for each state i do

U′[i]←R[i] + maxa
∑

j Ma
ij U[j]

end

until Close-Enough(U,U′)

return U

Applying to our example· · ·;
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2.2 Value iteration algorithm
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2.3 Assessing performance

Under certain conditions utility values are guaranteed to con-
verge.

Do we require convergence?

Two measures of progress:

1. RMS (root mean square) Error of Utitily Values
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2.3 Assessing performance

2. Policy Loss

Actual utility values less important than the policy they imply

⇒ measure difference between expected utility obtained from
policy and expected utility from optimal policy
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Note: policy is optimal before RMS error converges.
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3. Policy iteration

• policies may not be highly sensitive to exact utility values

⇒ may be less work to iterate through policies than utilities!

Policy Iteration Algorithm

π ← an arbitrary initial policy
repeat until no change in π

compute utilities given π (value determination)
update π as if utilities were correct (i.e., local MEU)

function Policy-Iteration(M,R) returns a policy

inputs: M, a transition model

R, a reward function on states

local variables: U, a utility function, initially identical to R

P, a policy, initially optimal with respect to U

repeat

U←Value-Determination(P,U,M,R)

unchanged?← true

for each state i do

if maxa
∑

j
Ma

ij U[j] >
∑

j
M

P[i]
ij U[j] then

P[i]← arg maxa
∑

j
Ma

ij U[j]

unchanged?← false

until unchanged?

return P
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3.1 Value determination

⇒ simpler than value iteration since action is fixed

Two possibilities:

1. Simplification of value iteration algorithm.

U ′(i)← R(i) +
∑

j
M

π(i)
ij U (j)

May take a long time to converge.

2. Direct solution.

U (i) = R(i) +
∑

j
M

π(i)
ij U (j) for all i

i.e., n simultaneous linear equations in n unknowns, solve in
O(n3) (eg. Gaussian elimination)

Can be most efficient method for small state spaces.
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4. What if I live forever?

Agent continues to exist — using the additive definition of utili-
ties

• U (i)s are infinite!

• value iteration fails to terminate

How should we compare two infinite lifetimes?

How can we decide what to do?

One method: discounting

Future rewards are discounted at rate γ ≤ 1

U ([s0, . . . s∞]) = Σ∞t=0γ
tR(st)

Intuitive justification:

1. purely pragmatic

• smoothed version of limited horizons in game playing

• smaller γ, shorter horizon

2. model of animal and human preference behaviour

• a bird in the hand is worth two in the bush!

• eg. widely used in economics to value investments
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The End
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