Artificial Intelligence

Topic 7

Sequential Decision Problems

<& Introduction to sequential decision
problems

<& Value iteration
<& Policy iteration
<& Longevity in agents

Reading: Russell and Norvig, Chapter 17, Sections 1-3
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1. Sequential decision problems

Previously concerned with single decisions, where utility of each
action’s outcome is known.

This section — sequential decision problems

— utility depends on a sequence of decisions

Sequential decision problems which include utilities, uncertainty,
and sensing, generalise search and planning problems. ..

Search

uncertainty

explicit actions
and utility

and subgoals

Markov decision
problems (MDPs) =<

uncertain \\ (belief states)

Planning

explicit actions

uncertainty

and subgoals

and utility sensing |
/
Decision—theoretic Partially observable
planning MDPs (POMDPSs)
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1.1 From search algorithms to policies

Sequential decision problems in known, accessible, deterministic
domains

tools — search algorithms

outcome — sequence of actions that leads to good state
Sequential decision problems in uncertain domains

tools — techniques originating from control theory, operations
research, and decision analysis

outcome — policy

policy = set of state-action “rules”

o tells agent what is the best (MEU) action to try in any situa-
tion
e derived from utilities of states

This section is about finding optimal policies.
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1.2 From search algorithms to policies — example

Consider the environment:

1 START

Problem
Utilities only known for terminal states
= even for deterministic actions, depth-limited search fails!

Utilities for other states will depend on sequence (or environment
history) that leads to terminal state.
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1.2 From search algorithms to policies — example

Indeterminism

deterministic version — each action (N,S,E,W) moves one
square in intended direction (bumping into wall results in no
change)

stochastic version 0.8
— actions are unreliable. . .

0.1 0.1

transition model — probabilities of actions leading to transitions
between states

M. = P(jli,a) = probability that doing a in i leads to j

Cannot be certain which state an action leads to (cf. game
playing).

= generating sequence of actions in advance then executing
unlikely to succeed
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1.2 From search algorithms to policies — example

Policies

But, if

e we know what state we've reached (accessible)

e we can calculate best action for each state

= always know what to do next!

Mapping from states to actions is called a policy

eg. Optimal policy for step costs of 0.04. ..

2 ? ? -1
1 ? - - f—
1 2 3 4

Note: small step cost =- conservative policy (eg. state (3,1))
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Figure 7.2 (a) An optimal pelicy for the stochastic environment with R{s) = — 0.04 in
the nonterminal states. {b} Optimal policies for four different ranges of R(s).

heads directly away from the —1 state so that it cannot fall in by accident, even though this
means banging its head against the wall quite a few times. Finally, if R(s) > 0, then lile is
positively enjoyable and the agent avoids both exits. As long as the actions in (4,1), (3,2),

and (3,3) are as shown, every policy is optimal, and the agent obtains infinite total reward be-

cause it never enters a terminal state. Surprisingly, it turns out that there are six other optimal
policies for various ranges of H{s); Exercise 17.7 asks you to find them.

‘ The careful balancing of risk and reward is a characteristic of MDPs that does not

arise in deterministic search problems; moreover, it is a characteristic of many real-world

decision problems. For this reason, MDPs have been studied in several fields, including Al

operations research, economics, and control theory. Dozens of algorithms have been proposed

for calculating optimal policies. In sections 17.2 and 17.3 we will describe two of the most

important algorithm families, First, however, we must complete our investigation of utilities

and policies for sequential decision problems.

Optimality in sequential decisien problems

In the MDP example in Figure 17.1, the performance of the agent was measured by a sum
of rewards for the states visited. This choice of performance measure is not arbitrary, but it
is not the only possibility. This section investigates the possible choices for the performance
measure—that is, cheices for the utility function on environment histories, which we will

Section |
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1.2 From search algorithms to policies — example

Expected Utilities

Given a policy, can calculate expected utilities. . .

3 0.812 0.868 0.912 +1

2 0.762 0.660 -1

1 0.705 0.655 0.611 0.388

Aim is therefore not to find action sequence, but to find optimal
policy — ie. policy that maximises expected utilities.
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1.2 From search algorithms to policies — example

Policy represents agent function explicitly

utility-based agent — simple reflex agent!

function SIMPLE-POLICY-AGENT(percept) returns an action

static: M, a transition model
U, a utility function on environment histories

P, a policy, initially unknown

if Pis unknown then P+« the optimal policy given U, M
return P|percept]

Problem of calculating an optimal policy in an accessible,
stochastic environment with a known transition model is called

a Markov decision problem.

Markov property — transition probabilities from a given state
depend only on the state (not previous history)

How can we calculate optimal policies. . . ?
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2. Value lteration

Basic idea:

e calculate utility of each state U(state)

e use state utilities to select optimal action

Sequential problems usually use an additive utility function (cf.
path cost in search problems):

U([s1,892,...,8,]) = R(s1)+ R(s2)+ -+ R(sy)
= R(s1) +U([s2,...,5S4])

where R(i) is reward in state i (eg. +1, -1, -0.04).

Utility of a state (a.k.a. its value):

U(s;) = expected sum of rewards until termination
assuming optimal actions

Difficult to express mathematically. Easier is recursive form. ..

expected sum of rewards = current reward
+ expected sum of rewards after taking best action
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2.1 Dynamic programming

Bellman equation (1957)

U(i) = R(i) + mC?JX%M{;U(j)

eg.
U(1,1) = —0.04
+ max{0.8U(1,2) + 0.1U(2,1) + 0.1U(1, 1), up
0.9U(1,1) + 0.1U(1,2) left
0.9U(1,1)+0.1U(2,1) down
0.8U/(2,1) + 0.1U(1,2) + 0.1U(1, 1)} right

One equation per state = n nonlinear equations in n unknowns

Given utilities of the states, choosing best action is just maximum
expected utility (MEU) — choose action such that the expected
utility of the immediate successors is highest.

policy(i) = argmax > MZ:U(j)
J

Proven optimal (Bellman & Dreyfus, 1962).

How can we solve
U(i) = R(i) + max> MU ()
j
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2.2 Value iteration algorithm

ldea

e start with arbitrary utility values

e update to make them locally consistent with Bellman eqn.

e repeat until “no change”

Everywhere locally consistent = global optimality

function VALUE-ITERATION(M, R) returns a utility function
inputs: M, a transition model
R, a reward function on states
local variables: U, utility function, initially identical to R
U, utility function, initially identical to R

repeat
U—U
for each state /i do
Uil < R[] + max, %; M?j Ulj]
end
until CLOSE-ENOUGH(U, U)
return U

Applying to our example- - - ~»
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2.2 Value iteration algorithm

T T T
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Number of iterations
3 0.812 | 0.868 0.912
2 | 0.762 0.660
1 0.705 0.655 0.611 0.388
1 2 3 4
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2.3 Assessing performance

Under certain conditions utility values are guaranteed to con-
verge.

Do we require convergence?

Two measures of progress:

1. RMS (root mean square) Error of Utitily Values

0.6 .

RMS error

04 .

0.2 r |

O ] ] ]
0 5 10 15 20
Number of iterations
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2.3 Assessing performance

2. Policy Loss
Actual utility values less important than the policy they imply

= measure difference between expected utility obtained from
policy and expected utility from optimal policy

Policy loss
o o O
NN » (00}

O
N
T
|

0 1 ] ]
0 5 10 15 20
Number of iterations

Note: policy is optimal before RMS error converges.
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3. Policy iteration

e policies may not be highly sensitive to exact utility values
= may be less work to iterate through policies than utilities!

Policy Iteration Algorithm

7 «— an arbitrary initial policy

repeat until no change in 7
compute utilities given 7 (value determination)
update 7 as if utilities were correct (i.e., local MEU)

function PoLICY-ITERATION(M, R) returns a policy
inputs: M, a transition model
R, a reward function on states
local variables: U, a utility function, initially identical to R
P, a policy, initially optimal with respect to U
repeat
U+« VALUE-DETERMINATION(P, U, M, R)
unchanged? < true
for each state / do _
if max, » M, Uj] > = M U] then
Pli] « argmax, = M;; Ulj]
unchanged? « fa Ijse
until unchanged?
return P
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3.1 Value determination

= simpler than value iteration since action is fixed
Two possibilities:

1. Simplification of value iteration algorithm.
U'(i) — R(i) + 3 MU (5)

May take a long time to converge.

2. Direct solution.

U(i) = R(i) + = MJU(j)  foralli
J

l.e., n simultaneous linear equations in n unknowns, solve in
O(n?) (eg. Gaussian elimination)

Can be most efficient method for small state spaces.
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4. What if | live forever?

Agent continues to exist — using the additive definition of utili-
ties

e U(%)s are infinite!
e value iteration fails to terminate

How should we compare two infinite lifetimes?

How can we decide what to do?

One method: discounting

Future rewards are discounted at rate 7 < 1

U([so, - - - $s]) = =7 R(s1)

Intuitive justification:

1. purely pragmatic

e smoothed version of limited horizons in game playing
e smaller ~y, shorter horizon

2. model of animal and human preference behaviour

e a bird in the hand is worth two in the bush!

e eg. widely used in economics to value investments
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The End
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