
Artificial Intelligence

Topic 5

Game playing

3 broadening our world view — dealing
with incompleteness

3 why play games?

3 perfect decisions — the Minimax

algorithm

3 dealing with resource limits
— evaluation functions
— cutting off search

3 alpha-beta pruning

3 game-playing agents in action

Reading: Russell and Norvig, Chapter 5

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 118



1. Broadening our world view

We have assumed we are dealing with world descriptions that
are:

complete — all necessary information about the problem
is available to the search algorithm

deterministic — effects of actions are uniquely deter-
mined

Real-world problems are rarely complete and deterministic. . .

Sources of Incompleteness

sensor limitations — not possible to gather enough in-
formation about the world to completely know its state
— includes the future!

intractability — full state description is too large to store,
or search tree too large to compute

Sources of (Effective) Nondeterminism

• humans, the weather, stress fractures, dice, . . .

Aside. . .

Debate: incompleteness ↔ nondeterminism

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 119



1.1 Approaches for Dealing with Incompleteness

contingency planning

• build all possibilities into the plan

• may make the tree very large

• can only guarantee a solution if the number of contingencies
is finite and tractable

interleaving or adaptive planning

• alternate between planning, acting, and sensing

• requires extra work during execution — planning cannot be
done in advance (or “off-line”)

strategy learning

• learn, from looking at examples, strategies that can be ap-
plied in any situation

• must decide on parameterisation, how to evaluate states,
how many examples to use, . . . black art??

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 120



2. Why Play Games?

• abstraction of real world

• well-defined, clear state descriptions

• limited operations, clearly defined consequences

but!

• provide a mechanism for investigating many of the real-world
issues outlined above

⇒ more like the real world than examples so far

Added twist — the domain contains hostile agents (also making
it like the real world. . . ?)

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 121



2.1 Examples

Tractable Problem with Complete Information

Noughts and crosses (tic-tac-toe) for control freaks — you get
to choose moves for both players!

X

X

X

O

O

OX

X

X X

X X

X O X

O

Stop when you get to a goal state.

•What uninformed search would you select? How many states
visited?

•What would be an appropriate heuristic for an informed
search? How many states visited?

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 122



2.1 Examples

Tractable Contingency Problem

Noughts and crosses — allow for all the oponents moves. (Opo-
nent is non-deterministic.)

How many states?

Intractable Contingency Problem

Chess

• average branching factor 35, approx 50 operations

⇒ search tree has about 35100 nodes (although only about
1040 different legal positions)!

• cannot solve by brute force, must use other approaches, eg.

– interleave time- (or space-) limited search with moves
⇒ this section

∗ algorithm for perfect play (Von Neumann, 1944)

∗ finite horizon, approximate evaluation (Zuse, 1945; Shan-
non, 1950; Samuel, 1952–57)

∗ pruning to reduce costs (McCarthy, 1956)

– learn strategies that determine what to do based on some
aspects of the current position
⇒ later in the course

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 123



3. Perfect Decisions — Minimax Algorithm

Perfect play for deterministic, perfect-information games

• two players, Max and Min, both try to win

•Max moves first

⇒ can Max find a strategy that always wins?

Define a game as a kind of search problem with:

• initial state

• set of legal moves (operators)

• terminal test — is the game over?

• utility function — how good is the outcome for each player?

eg. Tic-tac-toe — can Max choose a move that always results
in a terminal state with a utility of +1?

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 124



3. Perfect Decisions — Minimax Algorithm

Even for this simple game the search tree is large.

Try an even simpler game. . .

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 125



3. Perfect Decisions — Minimax Algorithm

eg. Two-ply (made-up game)

MAX

3 12 8 642 14 5 2

MIN

A
1

A
3

A
2

A
13A

12
A

11
A

21 A
23

A
22

A
33A

32
A

31

(one move deep, two ply)

•Max’s aim — maximise utility of terminal state

•Min’s aim — minimise it

• what is Max’s optimal strategy, assuming Min makes the
best possible moves?

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 126



3. Perfect Decisions — Minimax Algorithm

function Minimax-Decision(game) returns an operator

for each op in Operators[game] do

Value[op]←Minimax-Value(Apply(op,game),game)

end

return the op with the highest Value[op]

function Minimax-Value(state, game) returns a utility value

if Terminal-Test[game](state) then

return Utility[game](state)

else if max is to move in state then

return the highest Minimax-Value of Successors(state)

else

return the lowest Minimax-Value of Successors(state)

MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3

A
2

A
13A

12
A

11
A

21 A
23

A
22

A
33A

32
A

31

3 2 2

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 127



3. Perfect Decisions — Minimax Algorithm

Complete Yes, if tree is finite (chess has specific rules for this)

Optimal Yes, against an optimal opponent. Otherwise??

Time complexity O(bm)

Space complexity O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games
⇒ exact solution completely infeasible

Resource limits

Usually time: suppose we have 100 seconds, explore 104

nodes/second
⇒ 106 nodes per move

Standard approach:

• cutoff test

e.g., depth limit (perhaps add quiescence search)

• evaluation function

= estimated desirability of position

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 128



4. Evaluation functions

Instead of stopping at terminal states and using utility function,
cut off search and use a heuristic evaluation function.

Chess players have been doing this for years. . .

simple — 1 for pawn, 3 for knight/bishop, 5 for rook, etc

more involved — centre pawns, rooks on open files, etc

Black to move 

White slightly better

White to move 

Black winning

Can be expressed as linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens)

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 129



4.1 Quality of evalation functions

Success of program depends critically on quality of evalutation
function.

• agree with utility function on terminal states

• time efficient

• reflect chances of winning

Note: Exact values don’t matter

MIN

MAX

21

1

42

2

20

1

1 40020

20

Behaviour is preserved under any monotonic transformation of
Eval

Only the order matters:
payoff acts as an ordinal utility function

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 130



5. Cutting off search

Options. . .

• fixed depth limit

• iterative deepening (fixed time limit) — more robust

Problem — inaccuracies of evaluation function can have disas-
trous consequences.

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 131



5.1 Non-quiescence problem

Consider chess evaluation function based on material advantage.
White’s depth limited search stops here. . .

Looks like a win to white — actually a win to black.

Want to stop search and apply evaluation function in positions
that are quiescent. May perform quiescence search in some sit-
uations — eg. after capture.

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 132



5.2 Horizon problem

Win for white, but black may be able to chase king for extent of
its depth-limited search, so does not see this. Queening move is
“pushed over the horizon”.

No general solution.

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 133



6. Alpha-beta pruning

Consider Minimax with reasonable evaluation function and qui-
escent cut-off. Will it work in practice?

Assume can search approx 5000 positions per second. Allowed
approx 150 seconds per move. Order of 106 positions per move.

bm = 106, b = 35 ⇒ m = 4

4-ply lookahead is a hopeless chess player!

4-ply ≈ human novice
8-ply ≈ typical PC, human master
12-ply ≈ Deep Blue, Kasparov

But do we need to search all those positions? Can we eliminate
some before we get there — prune the search tree?

One method is alpha-beta pruning. . .

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 134



6.1 α–β pruning example

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 135



6.2 Why is it called α–β?

..

..

..

MAX

MIN

MAX

MIN V

α is the best value (to max) found so far off the current path

If V is worse than α, max will avoid it ⇒ prune that branch

Define β similarly for min

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 136



6.3 The α–β algorithm

Basically Minimax + keep track of α, β + prune

function Max-Value(state, game,α,β) returns the minimax value

of state

inputs: state, current state in game

game, game description

α, the best score for max along the path to state

β, the best score for min along the path to state

if Cutoff-Test(state) then return Eval(state)

for each s in Successors(state) do

α←Max(α,Min-Value(s, game,α,β))

if α ≥ β then return β

end

return α

function Min-Value(state, game,α,β) returns the minimax value

of state

if Cutoff-Test(state) then return Eval(state)

for each s in Successors(state) do

β←Min(β,Max-Value(s, game,α,β))

if β ≤ α then return α

end

return β

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 137



6.4 Properties of α–β

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles depth of search
⇒ can easily reach depth 8 and play good chess

Perfect ordering is unknown, but a simple ordering (captures first,
then threats, then forward moves, then backward moves) gets
fairly close.

Can we learn appropriate orderings? ⇒ speedup learning

(Note complexity results assume idealized tree model:

• nodes have same branching factor b

• all paths reach depth limit d

• leaf evaluations randomly distributed

Ultimately resort to empirical tests.)

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 138



7. Game-playing agents in practice

Games that don’t include chance

Checkers: Chinook became world champion in 1994 after 40-
year-reign of human world champion Marion Tinsley (who retired
due to poor health). Used an endgame database defining perfect
play for all positions involving 8 or fewer pieces on the board, a
total of 443,748,401,247 positions.

Chess: Deep Blue defeated human world champion Gary Kas-
parov in a six-game match (not a World Championship) in 1997.
Deep Blue searches 200 million positions per second, uses very
sophisticated evaluation, and undisclosed methods for extending
some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers,
who are too good.

Go: human champions refuse to compete against computers,
who are too bad. In go, b > 300, so most programs use pattern
knowledge bases to suggest plausible moves.

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 139



7. Game-playing agents in practice

Games that include an element of chance

Dice rolls increase b: 21 possible rolls with 2 dice

Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20× (21× 20)3 ≈ 1.2× 109

As depth increases, probability of reaching a given node shrinks
⇒ value of lookahead is diminished

α–β pruning is much less effective

TDGammon uses depth-2 search + very good Eval

≈ world-champion level

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 140



8. Summary

Games are fun to work on! (and can be addictive)

They illustrate several important points about AI

♦ problems raised by
— incomplete knowledge
— resource limits

♦ perfection is unattainable ⇒ must approximate

Games are to AI as grand prix racing is to automobile design

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 141



The End

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Game playing Slide 142


