
Artificial Intelligence

Topic 4

Informed search algorithms

3 Best-first search

3 Greedy search

3 A∗ search

3 Admissible heuristics

3 Memory-bounded search

3 IDA∗

3 SMA∗

Reading: Russell and Norvig, Chapter 4, Sections 1–3

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 66

1. Informed (or best-first) search

Recall uninformed search:

• select nodes for expansion on basis of distance from start

• uses only information contained in the graph

• no indication of distance to go!

Informed search:

• select nodes on basis of some estimate of distance to goal !

• requires additional information — evaluation function, or
heuristic rules

• choose “best” (most promising) alternative ⇒ best-first
search.

Implementation:

QueueingFn = insert successors in decreasing order of desir-
ability

Examples:

• greedy search

• A∗ search

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 67

2. Greedy search

Assume we have an estimate of the distance to the goal.

For example, in our travelling to Bucharest problem, we may
know straight-line distances to Bucharest. . .

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Greedy search always chooses to visit the candidate node with
the smallest estimate

⇒ that which appears to be closest to goal

Evaluation function h(n) (heuristic)
= estimate of cost from n to goal

E.g., hSLD(n) = straight-line distance from n to Bucharest

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 68

2. Greedy search

Arad

366

Zerind Sibiu Timisoara

374 253 329

Arad Oradea Rimnicu
 VilceaFagaras

366 380 178 193

Sibiu Bucharest

253 0

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 69

2. Greedy search

Complete? No, in general. e.g. can get stuck in loops.

Example: Iasi to Fagaras. . .

Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time? O(bm), but a good heuristic can give dramatic improve-
ment

Space? O(bm)—keeps all nodes in memory

Optimal? No

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 70

2.1 Means-ends Analysis

Example of greedy search. (Used in SOAR problem solver.)

Heuristic: Pick operations that reduce as much as possible the
“difference” between the intermediate state and goal state.

eg. Missionaries and cannibals

<{MMMCCCB},{}>

<[MMMCCB},{C}>

<{MMM},{CCCB}>

<{MMMCB},{CC}>

<{MC},{MMCCB}>

<{MMCCB},{MC}>

<{CC},{MMMCB}>

<{CCCB},{MMM}>

<{C},{MMMCCB}>

<{CCB},{MMMC}> <{MCB},{MMCC}>

<{},{MMMCCCB}>

<{MMMC},{CCB}> <{MMMCC},{CB}><{MMCC},{MCB}>

Indicates best choice in all states except for 〈{MC},{MMCCB}〉
and 〈{MMCCB},{MC}〉

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 71

3. A∗ search

Greedy search minimises estimated cost to goal, and thereby
(hopefully) reduces search cost, but is neither optimal nor com-
plete.

Uniform-cost search minimises path cost so far and is optimal
and complete, but is costly.

Can we get the best of both worlds. . . ?

Yes! Just add the two together to get estimate of total path
length of solution as our evaluation function. . .

Evaluation function

f(n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost to goal from n

f(n) = estimated total cost of path through n to goal

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 72

3. A∗ search

151

Arad

366

Zerind Sibiu Timisoara

Arad Oradea Rimnicu
 VilceaFagaras

Sibiu Bucharest

449 393 447

646 526 417 413

591 450 526 415 553

607 615 418

Craiova Pitesti Sibiu

Rimnicu
 Vilcea Craiova Bucharest

75 140 118

140 99 80

99 211 146 97 80

97 138 101

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 73

3. A∗ search

A heuristic h is admissible iff

h(n) ≤ h∗(n) for all n

where h∗(n) is the true cost from n.

i.e. h(n) never overestimates

e.g., hSLD(n) never overestimates the actual road distance

Can prove:

if h(n) is admissible, f(n) provides a complete and optimal
search!

⇒ called A∗ search.

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 74

3.1 Optimality of A∗

Theorem: A∗ search is optimal

Proof

Suppose some suboptimal goal G2 has been generated and is in
the queue. Let n be an unexpanded node on a shortest path to
an optimal goal G1.

G

n

G2

Start

f(G2) = g(G2) since h(G2) = 0

> g(G1) since G2 is suboptimal

≥ g(n) + h(n) since h is admissible

= f(n)

Since f(G2) > f(n), A∗ will not select G2 for expansion

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 75

3.2 Monotonicity and the pathmax equation

To get a more intuitive view, we consider the f -values along any
path.

For many admissible heuristics, f -values increase monotonically
(see Romania problem).

For some admissible heuristics, f may be nonmonotonic — ie it
may decrease at some points.

e.g., suppose n′ is a successor of n

n

n’ g’=6 h’=2 f’=8

g=5 h=4 f=9

1

But f ′ = 8 is redundant!

f(n) = 9 ⇒ true cost of a path through n is ≥ 9
⇒ true cost of a path through n′ is ≥ 9

Pathmax modification to A∗:

f(n′) = max(g(n′) + h(n′), f(n))

With pathmax, f is always increases monotonically · · · ;

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 76

3.3 Contours

Lemma: A∗ (with pathmax) expands nodes in order of increasing
f value

Gradually adds “f -contours” of nodes (cf. breadth-first/uniform-
cost adds layers or “circles” — A∗ “stretches” towards goal)

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

If f∗ is cost of optimal solution path:

• A∗ expands all nodes with f(n) < f∗

• A∗ expands some nodes with f(n) = f∗

Can see intuitively that A∗ is complete and optimal.

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 77

3.4 Properties of A∗

Complete Yes, unless there are infinitely many nodes with f ≤
f(G)

Time Exponential in [relative error in h × length of soln.]

Space Keeps all nodes in memory (see below)

Optimal Yes—cannot expand fi+1 until fi is finished

Among optimal algorithms of this type A∗ is optimally efficient!

ie. no other algorithm is guaranteed to expand fewer nodes.

“Proof”

Any algorithm that does not expand all nodes in each contour
may miss an optimal solution.

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 78

4. Admissible heuristics

Straight line distance is an obvious heuristic for distance planning.
What about other problems?

This section ⇒ examine heuristics in more detail.

E.g., two heuristics for the 8-puzzle:

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

h1(S) =??

h2(S) =??

Are both admissible?

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 79

4.1 Measuring performance

Quality of heuristic can be characterised by effective branching
factor b∗.

Assume:

• A∗ expands N nodes

• solution depth d

b∗ is branching factor of uniform tree, depth d with N nodes:

N = 1 + b∗ + (b∗)2 + · · · + (b∗)d

• tends to remain fairly constant over problem instances

• can be determined empirically

⇒ fairly good guide to heuristic performance

a good heuristic would have b∗ close to 1

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 80

4.1 Measuring performance

Example

Effective branching factors for iterative deepening search and A∗

with h1 and h2 (averaged over 100 randomly generated instances
of 8-puzzle for each solution length):

• informed better than uninformed

• h2 better than h1

Is h2 always better than h1?

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 81

4.2 Dominance

Yes!

We say h2 dominates h1 if h2(n) ≥ h1(n) for all n (both admis-
sible).

dominance ⇒ better efficiency

— h2 will expand fewer nodes on average than h1

“Proof”

A∗ will expand all nodes n with f(n) < f∗.

⇒ A∗ will expand all nodes with h(n) < f∗ − g(n)

But h2(n) ≥ h1(n) so all nodes expanded with h2 will also be
expanded with h1 (h1 may expand others as well).

always better to use an (admissible) heuristic function with higher
values

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 82

4.3 Inventing heuristics — relaxed problems

• How can we come up with a heuristic?

• Can the computer do it automatically?

A problem is relaxed by reducing restrictions on operators

cost of exact solution of a relaxed problem is often a good heuris-
tic for original problem

Example

• if the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1(n) gives the shortest solution

• if the rules are relaxed so that a tile can move to any adjacent
square, then h2(n) gives the shortest solution

Note: Must also ensure heuristic itself is not too expensive to
calculate.

Extreme case: perfect heuristic can be found by carrying out
search on original problem.

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 83

4.4 Automatic generation of heuristics

If problem is defined in suitable formal language ⇒ may be
possible to construct relaxed problems automatically.

eg. 8-puzzle operator description

A is adjacent to B & B is blank → can move from A to B

Relaxed rules (eliminate preconditions)

A is adjacent to B → can move from A to B

B is blank → can move from A to B

can move from A to B

Absolver (Prieditis 1993)

• new heuristic for 8-puzzle better than any existing one

• first useful heuristic for Rubik’s cube!

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 84

5. Memory-bounded Search

Good heuristics improve search, but many problems are still too
hard.

Usually memory restrictions that impose a hard limit.

(eg. recall estimates for breadth-first search

Depth Nodes Time Memory

0 1 1 millisecond 100 bytes
2 111 .1 seconds 11 kilobytes
4 11,111 11 seconds 1 megabyte
6 106 18 minutes 111 megabytes
8 108 31 hours 11 gigabytes

10 1010 128 days 1 terabyte
12 1012 35 years 111 terabytes
14 1014 3500 years 11,111 terabytes

)

This section — algorithms designed to save memory.

• IDA∗

• SMA∗

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 85

5.1 Iterative Deepening A∗ (IDA∗)

Recall uninformed search

• uniform-cost/breadth-first search

+ completeness, optimality

− exponential space usage

• depth-first

+ linear space usage

− incomplete, suboptimal

Solution: iterative-deepening ⇒ explores “uniform-cost
trees”, or “contours”, using linear space.

A

Z

O

S

T

L

M

R

P

B

F

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 86

5.1 Iterative Deepening A∗ (IDA∗)

Can we do the same with A∗?
O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Contours more directed, but same technique applies!

Modify depth-limited search to use f -cost limit, rather than
depth limit ⇒ IDA∗

Complete? Yes (with admissible heuristic)

Optimal? Yes (with admissible heuristic)

Space? Linear in path length

Time? ?

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 87

5.1 Iterative Deepening A∗ (IDA∗)

Time complexity of IDA∗

Depends on number of different values f can take on.

• small number of values, few iterations

eg. 8-puzzle

• many values, many iterations

eg. Romania example, each state has different heuristic ⇒
only one extra town in each contour

Worst case: A∗ expands N nodes, IDA∗ goes through N itera-
tions

1 + 2 + · · · + N ⇒ O(N 2)

(Recall N in turn is exponential in d × relative error in h.)

How does this compare with ID?

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 88

5.1 Iterative Deepening A∗ (IDA∗)

A solution: increase f -cost limit by fixed amount ǫ in each iter-
ation

⇒ returns solutions at worst ǫ worse than optimal

Called ǫ-admissible.

IDA∗ was first memory-bounded optimal heuristic algorithm and
solved many practical problems.

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 89

5.2 Simplified memory-bounded A∗ (SMA∗)

Uses all available memory .

How does it work?

• Need to generate successor nodes but no memory left ⇒
drop, or “forget”, least promising nodes.

• Keep record of best f -cost of forgotten nodes in ancestor.

• Only regenerate nodes if all more promising options are ex-
hausted.

Example (values of forgotten nodes in parentheses) · · · ⇒

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 90

5.2 Simplified memory-bounded A∗ (SMA∗)

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 91

5.2 Simplified memory-bounded A∗ (SMA∗)

Performance

• Complete if available memory is sufficient to store the shal-
lowest solution path.

• Optimal if available memory is sufficient to store the shallow-
est solution path. Otherwise best “solution” given available
memory.

Summary

• Solves significantly more difficult problems than A∗.

• Performs well on highly-connected state spaces and real-valued
heuristics on which A∗ has difficulty.

• Susceptible to continual “switching” between candidate solu-
tion paths.

ie. limit in memory can lead to intractible computation time

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 92

The End

c© CSSE. Includes material c© S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Informed search algorithms Slide 93

