Artificial Intelligence

Topic 14

Inference in first-order logic

Reading: Russell and Norvig, Chapter 9

© Cara MacNish. Includes material © S. Russell & P. Norvig 1995,2003 with permission.

CITS4211 Inference in first-order logic Slide 118

Outline

- \diamondsuit Reducing first-order inference to propositional inference
- \diamondsuit Unification
- \diamondsuit Generalized Modus Ponens
- \diamondsuit Forward and backward chaining
- \diamondsuit Logic programming
- $\diamondsuit~\mathsf{Resolution}$

A brief history of reasoning

450B.C.	Stoics	propositional logic, inference (maybe)	
322B.C.	Aristotle	"syllogisms" (inference rules), quantifiers	
1565	Cardano	probability theory (propositional logic + uncertainty)	
1847	Boole	propositional logic (again)	
1879	Frege	first-order logic	
1922	Wittgenstein	proof by truth tables	
1930	Gödel	\exists complete algorithm for FOL	
1930	Herbrand	complete algorithm for FOL (reduce to propositional)	
1931	Gödel	$ eg \exists$ complete algorithm for arithmetic	
1960	Davis/Putnam	"practical" algorithm for propositional logic	
1965	Robinson	"practical" algorithm for FOL—resolution	

Every instantiation of a universally quantified sentence is entailed by it:

 $\frac{\forall v \ \alpha}{\operatorname{Subst}(\{v/g\},\alpha)}$

for any variable \boldsymbol{v} and ground term \boldsymbol{g}

 $\mathsf{E.g.,} \; \forall x \;\; King(x) \wedge Greedy(x) \; \Rightarrow \; Evil(x) \; \mathsf{yields}$

 $\begin{array}{l} King(John) \wedge Greedy(John) \ \Rightarrow \ Evil(John) \\ King(Richard) \wedge Greedy(Richard) \ \Rightarrow \ Evil(Richard) \\ King(Father(John)) \wedge Greedy(Father(John)) \ \Rightarrow \ Evil(Father(John)) \\ \vdots \end{array}$

For any sentence α , variable v, and constant symbol kthat does not appear elsewhere in the knowledge base:

 $\frac{\exists v \ \alpha}{\text{SUBST}(\{v/k\}, \alpha)}$

E.g., $\exists x \ Crown(x) \land OnHead(x, John)$ yields

 $Crown(C_1) \wedge OnHead(C_1, John)$

provided C_1 is a new constant symbol, called a Skolem constant

Another example: from $\exists x \ d(x^y)/dy = x^y$ we obtain

 $d(e^y)/dy = e^y$

provided e is a new constant symbol

© Cara MacNish. Includes material © S. Russell & P. Norvig 1995,2003 with permission.

UI can be applied several times to **add** new sentences; the new KB is logically equivalent to the old

El can be applied once to **replace** the existential sentence; the new KB is **not** equivalent to the old, but is satisfiable iff the old KB was satisfiable Suppose the KB contains just the following:

 $\begin{array}{l} \forall x \;\; King(x) \wedge Greedy(x) \; \Rightarrow \; Evil(x) \\ King(John) \\ Greedy(John) \\ Brother(Richard, John) \end{array}$

Instantiating the universal sentence in all possible ways, we have

$$\begin{split} &King(John) \wedge Greedy(John) \Rightarrow Evil(John) \\ &King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard) \\ &King(John) \\ &Greedy(John) \\ &Brother(Richard, John) \end{split}$$

The new KB is propositionalized: proposition symbols are

 $King(John),\ Greedy(John),\ Evil(John), King(Richard)\, {\rm etc.}$

© Cara MacNish. Includes material © S. Russell & P. Norvig 1995,2003 with permission.

Claim: a ground sentence* is entailed by new KB iff entailed by original KB

- Claim: every FOL KB can be propositionalized so as to preserve entailment
- Idea: propositionalize KB and query, apply resolution, return result
- Problem: with function symbols, there are infinitely many ground terms, e.g., Father(Father(Father(John)))
- Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by a **finite** subset of the propositional KB
- Idea: For n = 0 to ∞ : create a propositional KB by instantiating with depth-n terms and see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable

Propositionalization seems to generate lots of irrelevant sentences. E.g., from

```
 \begin{array}{l} \forall x \;\; King(x) \wedge Greedy(x) \; \Rightarrow \; Evil(x) \\ King(John) \\ \forall y \;\; Greedy(y) \\ Brother(Richard, John) \end{array}
```

it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant

With $p \ k$ -ary predicates and n constants, there are $p \cdot n^k$ instantiations

With function symbols, it gets nuch much worse!

Unification

We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

 $\theta = \{x/John, y/John\} \text{ works}$

 $\text{Unify}(\alpha,\beta) = \theta \text{ if } \alpha\theta = \beta\theta$

Standardizing apart eliminates overlap of variables, e.g., $Knows(z_{17}, OJ)$

$$\frac{p_1', p_2', \dots, p_n', (p_1 \wedge p_2 \wedge \dots \wedge p_n \Rightarrow q)}{q\theta}$$

where $p_i'\theta = p_i\theta$ for all i

$$\begin{array}{ll} p_1' \text{ is } King(John) & p_1 \text{ is } King(x) \\ p_2' \text{ is } Greedy(y) & p_2 \text{ is } Greedy(x) \\ \theta \text{ is } \{x/John, y/John\} & q \text{ is } Evil(x) \\ q\theta \text{ is } Evil(John) \end{array}$$

GMP used with KB of definite clauses (**exactly** one positive literal) All variables assumed universally quantified

Soundness of GMP

Need to show that

$$p_1', \ldots, p_n', (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \models q\theta$$

provided that $p_i'\theta = p_i\theta$ for all i

Lemma: For any definite clause p, we have $p \models p\theta$ by UI

- **1.** $(p_1 \land \ldots \land p_n \Rightarrow q) \models (p_1 \land \ldots \land p_n \Rightarrow q)\theta = (p_1\theta \land \ldots \land p_n\theta \Rightarrow q\theta)$
- **2.** $p_1', \ldots, p_n' \models p_1' \land \ldots \land p_n' \models p_1' \theta \land \ldots \land p_n' \theta$
- 3. From 1 and 2, $q\theta$ follows by ordinary Modus Ponens

The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal

... it is a crime for an American to sell weapons to hostile nations:

... it is a crime for an American to sell weapons to hostile nations: $American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$ Nono ... has some missiles ... it is a crime for an American to sell weapons to hostile nations: $American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$ Nono ... has some missiles, i.e., $\exists x \ Owns(Nono, x) \land Missile(x)$: $Owns(Nono, M_1)$ and $Missile(M_1)$... all of its missiles were sold to it by Colonel West

Example knowledge base contd.

 $\begin{array}{l} \dots \text{ it is a crime for an American to sell weapons to hostile nations:} \\ American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x) \\ \text{Nono} \dots \text{ has some missiles, i.e., } \exists x \ Owns(Nono, x) \land Missile(x): \\ Owns(Nono, M_1) \text{ and } Missile(M_1) \\ \dots \text{ all of its missiles were sold to it by Colonel West} \\ \forall x \ Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono) \\ \end{array}$

Missiles are weapons:

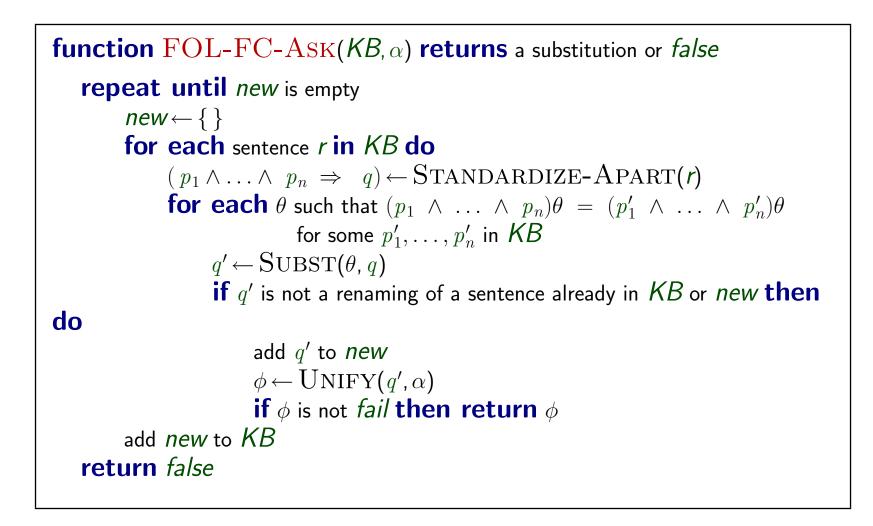
Example knowledge base contd.

 $\begin{array}{l} \dots \text{ it is a crime for an American to sell weapons to hostile nations:} \\ American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x) \\ \text{Nono} \dots \text{ has some missiles, i.e., } \exists x \ Owns(Nono, x) \land Missile(x): \\ Owns(Nono, M_1) \text{ and } Missile(M_1) \\ \dots \text{ all of its missiles were sold to it by Colonel West} \\ \forall x \ Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono) \\ \text{Missiles are weapons:} \\ Missile(x) \Rightarrow Weapon(x) \\ \end{array}$

An enemy of America counts as "hostile":

... it is a crime for an American to sell weapons to hostile nations: $American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$ Nono ... has some missiles, i.e., $\exists x \ Owns(Nono, x) \land Missile(x)$: $Owns(Nono, M_1)$ and $Missile(M_1)$... all of its missiles were sold to it by Colonel West $\forall x \; Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$ Missiles are weapons: $Missile(x) \Rightarrow Weapon(x)$ An enemy of America counts as "hostile": $Enemy(x, America) \Rightarrow Hostile(x)$ West, who is American . . . American(West)The country Nono, an enemy of America ... Enemy(Nono, America)

Forward chaining algorithm



Forward chaining proof

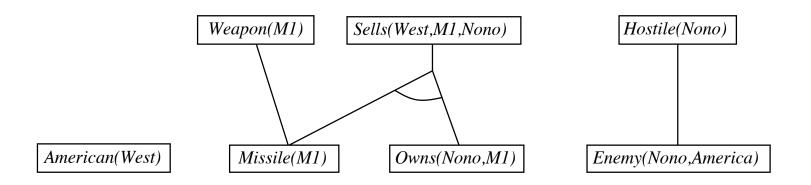
American(West)

Missile(M1)

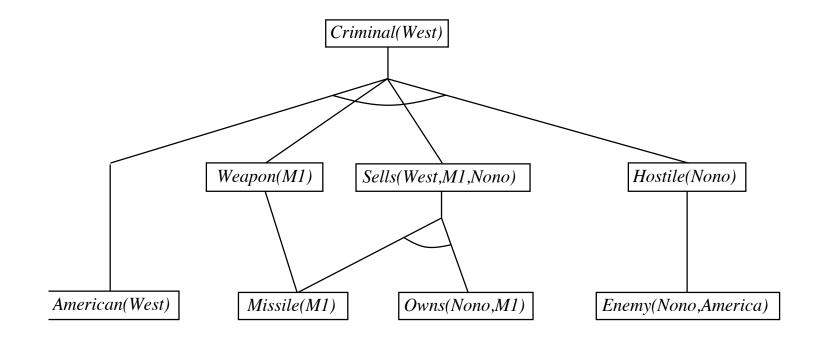
Owns(Nono,M1)

Enemy(Nono,America)

© Cara MacNish. Includes material © S. Russell & P. Norvig 1995,2003 with permission.



Forward chaining proof



Sound and complete for first-order definite clauses (proof similar to propositional proof)

Datalog = first-order definite clauses + **no functions** (e.g., crime KB) FC terminates for Datalog in poly iterations: at most $p \cdot n^k$ literals

May not terminate in general if α is not entailed

This is unavoidable: entailment with definite clauses is semidecidable

Simple observation: no need to match a rule on iteration k if a premise wasn't added on iteration k-1

 \Rightarrow match each rule whose premise contains a newly added literal

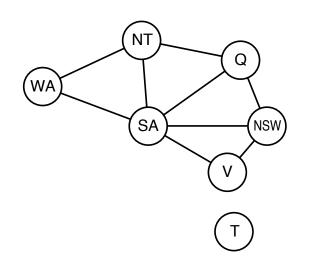
Matching itself can be expensive

Database indexing allows O(1) retrieval of known facts e.g., query Missile(x) retrieves $Missile(M_1)$

Matching conjunctive premises against known facts is NP-hard

Forward chaining is widely used in deductive databases

Hard matching example

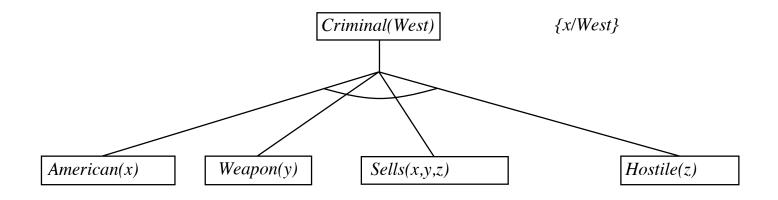


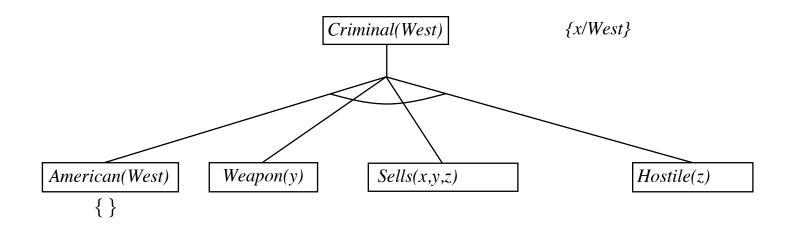
 $\begin{array}{l} \textit{Diff}(wa,nt) \land \textit{Diff}(wa,sa) \land \\ \textit{Diff}(nt,q)\textit{Diff}(nt,sa) \land \\ \textit{Diff}(q,nsw) \land \textit{Diff}(q,sa) \land \\ \textit{Diff}(nsw,v) \land \textit{Diff}(nsw,sa) \land \\ \textit{Diff}(v,sa) \Rightarrow \textit{Colorable}() \\ \textit{Diff}(Red,Blue) \quad \textit{Diff}(Red,Green) \\ \textit{Diff}(Green,Red) \quad \textit{Diff}(Green,Blue) \\ \textit{Diff}(Blue,Red) \quad \textit{Diff}(Blue,Green) \end{array}$

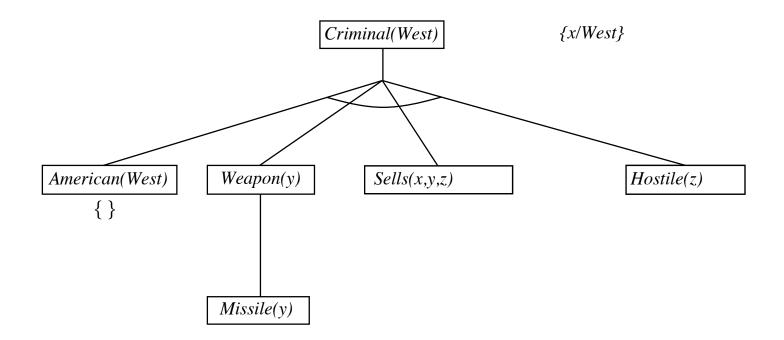
Colorable() is inferred iff the CSP has a solution CSPs include 3SAT as a special case, hence matching is NP-hard

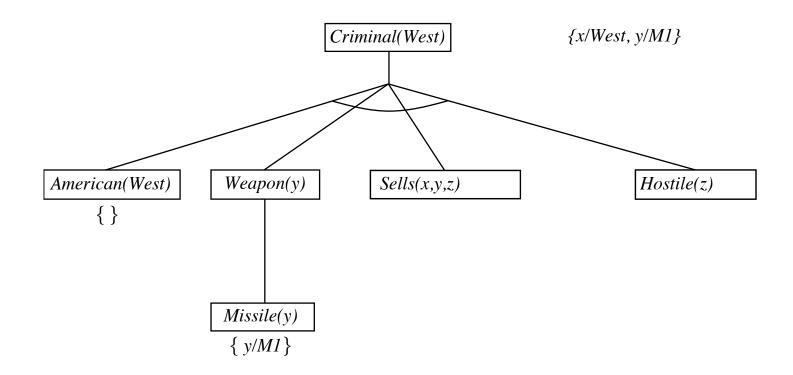
```
function FOL-BC-ASK(KB, goals, \theta) returns a set of substitutions
   inputs: KB, a knowledge base
              goals, a list of conjuncts forming a query (\theta already applied)
              \theta, the current substitution, initially the empty substitution \{ \}
   local variables: answers, a set of substitutions, initially empty
   if goals is empty then return \{\theta\}
   q' \leftarrow \text{SUBST}(\theta, \text{FIRST}(goals))
   for each sentence r in KB
             where STANDARDIZE-APART(r) = (p_1 \land \ldots \land p_n \Rightarrow q)
             and \theta' \leftarrow \text{UNIFY}(q, q') succeeds
        new_goals \leftarrow [p_1, \ldots, p_n |REST(goals)]
            answers \leftarrow FOL-BC-ASK(KB, new_goals, COMPOSE(\theta', \theta)) \cup
answers
   return answers
```

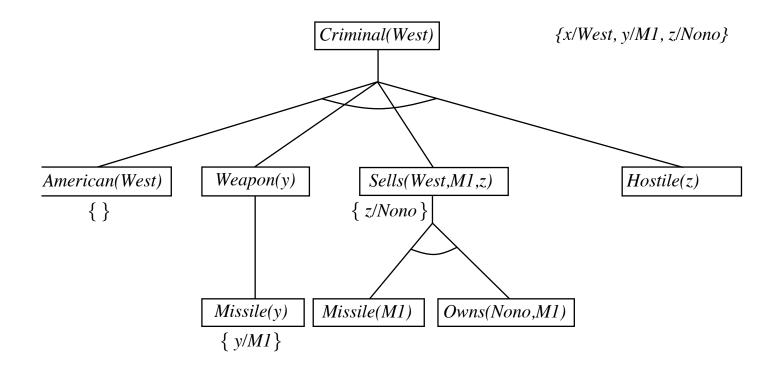
Criminal(West)

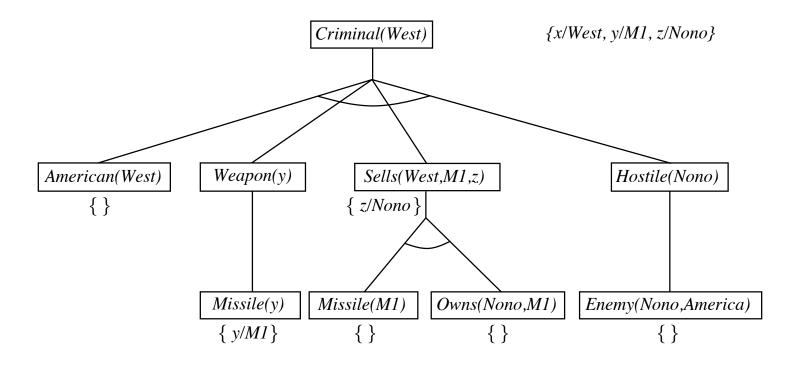












Depth-first recursive proof search: space is linear in size of proof

Incomplete due to infinite loops

 \Rightarrow fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure) \Rightarrow fix using caching of previous results (extra space!)

Widely used (without improvements!) for logic programming

Logic programming

Sound bite: computation as inference on logical KBs

	Logic programming	Ordinary programming
1.	Identify problem	Identify problem
2.	Assemble information	Assemble information
3.	Tea break	Figure out solution
4.	Encode information in KB	Program solution
5.	Encode problem instance as facts	Encode problem instance as data
6.	Ask queries	Apply program to data
7.	Find false facts	Debug procedural errors

Should be easier to debug Capital(NewYork, US) than x := x + 2 !

Basis: backward chaining with Horn clauses + bells & whistles Widely used in Europe, Japan (basis of 5th Generation project) Compilation techniques \Rightarrow approaching a billion LIPS

Program = set of clauses = head :- literal₁, ... literal_n.

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
Closed-world assumption ("negation as failure")
 e.g., given alive(X) :- not dead(X).
 alive(joe) succeeds if dead(joe) fails

Depth-first search from a start state X:

```
dfs(X) :- goal(X).
dfs(X) :- successor(X,S),dfs(S).
```

No need to loop over S: successor succeeds for each

Appending two lists to produce a third:

```
append([],Y,Y).
append([X|L],Y,[X|Z]) :- append(L,Y,Z).
```

Full first-order version:

 $\frac{\ell_1 \vee \cdots \vee \ell_k, \quad m_1 \vee \cdots \vee m_n}{(\ell_1 \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n)\theta}$

where $\text{UNIFY}(\ell_i, \neg m_j) = \theta$.

For example,

 $\begin{array}{c} \neg Rich(x) \lor Unhappy(x) \\ Rich(Ken) \\ \hline \\ Unhappy(Ken) \end{array}$

with $\theta = \{x/Ken\}$

Apply resolution steps to $CNF(KB \land \neg \alpha)$; complete for FOL

© Cara MacNish. Includes material © S. Russell & P. Norvig 1995,2003 with permission.

Everyone who loves all animals is loved by someone: $\forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x, y)] \Rightarrow [\exists y \ Loves(y, x)]$

1. Eliminate biconditionals and implications

 $\forall x \ [\neg \forall y \ \neg Animal(y) \lor Loves(x,y)] \lor [\exists y \ Loves(y,x)]$

2. Move \neg inwards: $\neg \forall x, p \equiv \exists x \neg p, \neg \exists x, p \equiv \forall x \neg p$:

 $\begin{array}{l} \forall x \; [\exists y \; \neg(\neg Animal(y) \lor Loves(x,y))] \lor [\exists y \; Loves(y,x)] \\ \forall x \; [\exists y \; \neg\neg Animal(y) \land \neg Loves(x,y)] \lor [\exists y \; Loves(y,x)] \\ \forall x \; [\exists y \; Animal(y) \land \neg Loves(x,y)] \lor [\exists y \; Loves(y,x)] \end{array}$

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

 $\forall x \ [\exists y \ Animal(y) \land \neg Loves(x,y)] \lor [\exists z \ Loves(z,x)]$

- Skolemize: a more general form of existential instantiation. Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:
 - $\forall x \ [Animal(F(x)) \land \neg Loves(x,F(x))] \lor Loves(G(x),x)$
- 5. Drop universal quantifiers:

 $[Animal(F(x)) \land \neg Loves(x,F(x))] \lor Loves(G(x),x)$

6. Distribute \land over \lor :

 $[Animal(F(x)) \lor Loves(G(x), x)] \land [\neg Loves(x, F(x)) \lor Loves(G(x), x)]$

Resolution proof: definite clauses

