@/@ THE UNIVERSITY OF

=% AUSTRALIA

School of Computer Sci and Softwar

CITS4009
Introduction to Data
Science

SEMESTER 2, 2017: CHAPTER 4 MANAGING DATA

Chapter Objectives

* Fixing data quality problems

* Organizing your data for the modeling process

Cleaning Data

* This is where you fix issues you faced during the data exploration
(discussed in chapter 3 chapter).

* Treating missing values (NAs):
* To Drop or not to Drop?

If the missing data represents a fairly small fraction of the dataset, it’s probably
safe just to drop these customers from your analysis.

* Missing data in categorical variables:

The most straightforward solution is just to create a new category for the
variable, called missing.

* Why so many customers are missing this information?
1. It could just be bad record-keeping
2. but it could be semantic.

* Why a new variable?

Make a new variable from the original to differentiate the original record from the fix in case you
second-guess or redo data cleaning.

Missing values in numeric data:

> summary (custdata$Income)
Min. 1lst Qu. Median Mean 3rd Qu. Max. NA's
0 25000 45000 66200 82000 615000 328

You believe that income is still an important predictor of the probability of health insurance
coverage, so you still want to use the variable. What do you do?

When values are missing randomly

> meanTncome <- mean(custdarasIincome, na.rm=T) “ Don't forget the argument

» Income.fix <- ifelse(is.nalcustdataSIncome), ‘na.rm=T"! Otherwise, the
meanIncome, mean() function will include
custdatasIncoma) the NAs by default, and

> summary (Income. fix) meanincome will be NA.

Min. 1st Qu. Median Mean 3rd Qu. Max.

0 35000 66200 66200 66200 615000

* The estimate can be improved when you remember that income is related to
other variables in your data—for instance, you know from your data exploration
in the previous chapter that there’s a relationship between age and income.

* It's possible that the customers with missing income data are systematically
different from the others.

* The customers with missing income information truly have no. If this is so, then
“filling in” their income information by using one of the preceding methods is
the wrong thing to do.

When values are missing systematically
* Convert the numeric data into
categorical data gy iy oo fcunntlagh vy Sepmrag iy

° Then use methods SUCh aS > braaks <=-c{0, 10000, 50000, 100000, 250000, 1000000} <}

Cut the data into income ranges. The

include lowest=T argument makes sure that zero
C'Ult () > InCone.groups <- income data is included in the lowest income
cut fcustdatas INCome . range category. By default it would be excluded.

breaks=breaks. include.loweste=T)

* You could also replace all » susmary (Tncome. groups)
the NAS With Zero income [0,1e+04] [le+04d,5e+04] (Ses04.1es05] (1e+05,2.5e+05] (2.%e+0%, le+06]

LR J1la 178 28 21

. HA'S The cut{) function produces
Add the wo 328 factor variables. Note the
i NAs are preserved,
category to » Income.groups <- as.character (Income.groups)
Fapiace To preserve the category
the Nis. &= > Income.groups <- ifelse(is.na(lncome.groups), names belore IIHiI'I; 3
*no income®. Income.groups) new calegory, convert

the variables to strings.
> summary(as.factor(Income.groups) |

[les(d, Sa+04] lasis, 2. 52+058] (2.52«08,1a+06] [Se+04,le=05] |0, 1lesD4]
312 Qd i1 iH B3

no income

328

The missinglncome variable lets you differentiate the two kinds of zeros in the
data: the ones that you are about to add, and the ones that were already there.

missingIncome <- 1s.nalcustdacasIncoms) <
Income.f1x =- 1felsel(ls.naicustdactasIncome), 0, custdataslIncome)]

Replace the NAs with zeros.

Tracking original NAs with an extra categorical variable

* You could also replace all the NAs with zero income and add an

additional variable (we call it a masking variable) to keep track of
which data points have been altered.

* Note that if the missing values really are missing randomly, then

the masking variable will basically pick up the variable’s mean value
(at least in regression models).

Data transformations

* The purpose of data transformation is to make data easier to
model—and easier to understand

* The need for data transformation can also depend on which
modeling method you plan to use

* For linear and logistic regression, for example, you ideally want
to make sure that the relationship between input variables and
output variable is approximately linear, and that the output
variable is constant variance

Converting continuous variables to
discrete

* Discretizing continuous variables is useful when the
relationship between input and output isn’t linear,
but you’re using a modeling technique that assumes
it is, like regression.

you can
replace the
iIncome
variable with
a Boolean
variable that
indicates
whether
iIncome is less
than $20,000

as.numeric{health.ins)

l‘IIIIII L] 1 I.IlIII

Kink in the graph at about $20,000; a cut
here dvides the graph into two regions that
each have less vanation than the total graph.
It also expresses the relative flatness
of the left side of the cul.

This is a good candidate to
spht into a binary variable.

" - “e .t
* o Mpo'PFL gt

18404

TR LRY & ¥ % S
|

income

Il-llll

> custdata$income.lt.20K <- custdata$income < 20000
> summary (custdata$income.lt.20K)

Mode FALSE TRUE NA's

logical 678 322 0

For more than a simple threshold use the cut () function.

= brks = c{d, 25, &5, InE) o s-l'lll‘.'ﬂlhl‘.‘ig-t'
The > custdataSage.range <- cut (custdatasage. ranges of interest.
putput of bBreakasbrks, includs. loweaatsT) 1 Cut the data im:r.lgl FAREES. The upper and
cub()isa [> summary(custdataj$age.range) The include lowest=T argument lower bounds
facter [0.25]) (25.65] (6%,Inf] makes sure that zero age data is should encompass
variable. el 132 212 included in the lowest age range the full range of
category. By default it would be the data.
excluded.

Converting age into ranges

Normalization and rescaling

* Normalization is useful when absolute quantities are less meaningful than
relative ones.

> summary (custdataS$age)
Min. 1lst Qu. Median Mean 3rd Qu. Max.
0.0 38.0 50.0 51.7 64.0 146.7
> meanage <- mean (custdataS$age)
> custdata$age.normalized <- custdata$age/meanage
> summary (custdata$age.normalized)

Min. 1lst Qu. Median Mean 3rd Qu. Max.

* The typical age spread of your

The average age of
both populations is S0.

|
|
I ’ [}
customers is summarized in the Sl |
standard deviation. 0.6 - —_ /
. | . \
* rescale your data by using the Bl ieoro M 8 o
d d d . . . f > mln::l;; ES:‘II-IQI::; IIJ:I I '. iﬂ;ﬂ?:ﬁgﬁgllﬁ :;25“? .I_aEEI
standard deviation as a unit o 5, JEondeon ke P 0 age range /Wwﬂm
di stance. 2 in pupulatini : / mwmmw
. . . : : I'..-f Population1 includes
e A customer who is within one o poope with a wide

standard deviation of the meanis "~ I ——
not much older or younger than \/
typical. A customer who is more -
than one or two standard E.;L.
deviations from the mean can be

considered much older, or much
younger.

= gummaryi(custdataSage)

Hin. lst {u. Hedian Mean 3Ird Q. Max.
Take the 0.0 18.0 50.0 51.7 64.0 146.7
el Lt > mesanage <- mean{custdataSage) Take the
» stdage <- sd{custdata$age) - | Standard deviation.

= meanade

Nk ah
[1 j--\‘-‘ﬁ'l | Use the mean value
= mbdage

(REOAE as the origin {or
(1] 1E.86343 reference point)
» pustdatasage normalired - [(custdataSage-meanage) /stdage = and rescale the

= summaryicustdatasage. . normalized) distance from the
Min. 1st Qu. Madian Maan Ird Qu. Hax. mean by the

2. 74100 =0.72630 =0.0%011 O.00000 0.6%210 5.03500 standard deviation.

* Values less than -1 signify customers younger than typical; values
greater than 1 signify customers older than typical.

* Normalizing by mean and standard deviation is most meaningful
when the data distribution is roughly symmetric. Next, we'll look at
a transformation that can make some distributions more
symmetric.

Log transformations for skewed
and wide distributions

* Monetary amounts—incomes, customer value, account, or
purchase sizes—are some of the most commonly
encountered sources of skewed distributions in data

science applications

* Taking the log of the data can restore symmetry to it.

The income distribution

1e=05 -
— is asymmetlric, skewed
5 s0 most of the mass is
c on the left.
L 50-06 -
Che0) = : : ——l— :
30 $200,000 $400,000 $600,000
income
1.00=
0.75 = Maost of the mass of
- log10{incame) is nearly
. SEESE symmetnc, though there is
c Ual= a long tail on the left
- {very small incomes).
025=-

L0 =
] | i
2 3 4

log10(income)

LA =
(g]

A nearly lognormal distribution and its log

A technicality

* For the purposes of modeling, which logarithm you use—
natural logarithm, log base 10, or log base 2—is generally not
critical.

* Inregression, for example, the choice of logarithm affects the
magnitude of the coefficient that corresponds to the logged
variable, but it doesn’t affect the value of the outcome.

* We like to use log base 10 for monetary amounts, because
orders of ten seem natural for money: $100, $1000, $10,000,
and so on.

e

A technicality- Cont.

* Generally a good idea to log transform data with values
that range over several orders of magnitude:

* first, because modeling techniques often have a difficult
time with very wide data ranges; and

* second, because such data often comes from
multiplicative processes, so log units are in some sense
more natural.

e

Additive Process

when you’re studying weight loss, the natural unit is often
pounds or kilograms. If you weigh 150 pounds and your
friend weighs 200, you'’re both equally active, and you both
go on the exact same restricted-calorie diet, then you'll
probably both lose about the same number of pounds—in
other words, how much weight you lose doesn’t (to first
order) depend on how much you weighed in the first place,
only on calorie intake.

e

Multiplicative Process

* If management gives everyone in the department a raise,
it probably isn’t giving everyone $5,000 extra. Instead,
everyone gets a 2% raise: how much extra money ends up
in your paycheck depends on your initial salary.

* The natural unit of measurement is percentage, not
absolute dollars.

e

T
T

A technicality

ne logarithm only works if the data is non-negative.

nere are other transforms, such as arcsinh, that you can use to

decrease data range if you have zero or negative values.

°In applications where the skewed data is monetary (like account
balances or customer value), we instead use what we call a
signed logarithm. A signed logarithm takes the logarithm of the
absolute value of the variable and multiplies by the appropriate
sign. Values strictly between -1 and 1 are mapped to zero.

The difference between log and
sighed log

Here’s how to calculate signed log S oW
base 10, in R: '
signedlogl0 <- function(x) {

- > _ Dotted line:
lfelse (abs (X) <= 1 , O , '%E' - signediog10{income)
sign (x) *1og10 (abs (x))) niﬂﬁé’ﬂﬂ‘i‘hﬁﬂ‘;n\
droppead
} 0.2 -
i

: log10income -

Sampling for modeling and
validation

* Sampling is the process of selecting a subset of a
population to represent the whole, during analysis and
modeling.

* In the current era of big datasets, some people argue that
computational power and modern algorithms let us
analyze the entire large dataset without the need to
sample.

Why Sampling?

* sampling is a necessary task for other reasons.:

1. When you’re in the middle of developing or refining a modeling procedure,
it’s easier to test and debug the code on small subsamples before training
the model on the entire dataset.

2. Visualization can be easier with a subsample of the data; ggplot runs
faster on smaller datasets, and too much data will often obscure the
patterns in a graph

3. And often it’s not feasible to use your entire customer base to train a model.

4. It's important that the dataset that you do use is an accurate representation
of your population as a whole

5. The other reason to sample your data is to create test and training splits.

Test and training splits

* For prediction models:
> Need data to build model (training set)
> Need data to test model (test set)

* The training set is the data that you feed to the model-building
algorithm—regression, decision trees, and so on—so that the
algorithm can set the correct parameters to best predict the
outcome variable.

* The test set is the data that you feed into the resulting model, to
verify that the model’s predictions are accurate.

Creating a sample group column

* A convenient way to manage random sampling is to add a sample
group column to the data frame. The sample group column
contains a number generated uniformly from zero to one, using the
runif function.

* You can draw a random sample of arbitrary size from the data

frame by v<sino the annranriate threchnld nn the camnle orniin

C0|umn > custdatasgp <- runif (dim{custdata) 1]}

| dim{custdata) returns
Here we | > testsSet =- subset(custdata, custdata$gp <= 0.1} = the number of rows
and columns of the
E:r“?"‘:‘te |~ > trainingSet <- subset{custdata, custdataSgp > 0.1) B RO
a training : i g
using the fe AL s i L Here we generate a test set of about xl:::'l::?xe num]IE-:! of
”“‘“‘l"“':‘ag [1] 93 10% of the data (93 customers—a el
a a = = -
> dim(trainingSet) [1] P “:::'r':f““a'}:i““:;"ﬂ

H

Reproducible sampling is not
just a trick for R

If your data is in a database or other external store, and you
only want to pull a subset of the data into R for analysis, you
can draw a reproducible random sample by generating a
sample group column in an appropriate table in the
database, using the SQL command RAND .

Record grouping

* If you're modeling a question at the household level rather

t
S
t

nan the customer level, then every member of a household
nould be in the same group (test or training). In other words,

ne random sampling also has to be at the household level.

* Suppose your customers are marked both by a household ID
and a customer ID (so the unique ID for a customer is the
combination (household id, cust_id) . (Thisis
shown next figure).

* We want to split the households into a training set and a test

1- Example of dataset with customers and households:

PORSIRIVY L CL LA EUST Lo R 3- Example of dataset with customers and households:

Household 1 [hhl custl 30200
— hhZ2 custl 24200 household_id cust_id income ap
i hhZz custZ 134800 R el ;
= Household 2 ———mm—ou e custl
hh3 custl 2995000 _hh2 cust2 13480¢ ‘\
SO0 — hh3 custl 299000 2.913009
HEUEGno. 3 hh3 CUStZ 6 Household 3 ————{ hh3 custZ 05008 0.9130094
| hh3 cust3 95000 _hh3 cust3 95000 0.9130094 lole haleach
== — mamber of a
HDUEEhﬂ'Id 4 hh4 Cl..l!itl 333% Household 4 ——— x E:z:; 35!3: g'gﬁig: household has the
_ hh4 custz 0 (s Ehhs Custl 100300 0.5388283 oot
H hold 5 hh5 custl 100300 hhS cust? 27000 @.5388283
ouseno
. hh5 custZ 27000

2- Ensuring test/train split doesn’t split inside a household:

== hh =- unigue|{hhdatafhousehold_id) Create a temporary data frame of
Get all B househald 10s and a wniformiy
unigue random nember from 0 to 1.
household housahalde <- dacta.frame (housahald_id = hh, gp = runif{leagthilkh) | ’
IDs From =
your daia
frame. | hhdata <- merge (hhdaca. households, bys~housshold_id=)
Merge new random sample group
codumn back into original data frams.,
] I ———

Data provenance

* You'll want to add a column (or columns) to record data
provenance

* when your dataset was collected, perhaps what version of your
data cleaning procedure was used on the data before modeling,
and so on.

* This is akin to version control for data.

* [t’s handy information to have, to make sure that you’re comparing
apples to apples when you’re in the process of improving your
model, or comparing different models or different versions of a

Key Takeaways

* What you do with missing values depends on how many there are,
and whether they’re missing randomly or systematically.

* When in doubt, assume that missing values are missing
systematically.

* Appropriate data transformations can make the data easier to
understand and easier to model.

* Normalization and rescaling are important when relative changes are
more important than absolute ones.

* Data provenance records help reduce errors as you iterate over data

	Slide 1
	Chapter Objectives
	Cleaning Data
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Data transformations
	Converting continuous variables to discrete
	Slide 10
	Slide 11
	Normalization and rescaling
	Slide 13
	Slide 14
	Log transformations for skewed and wide distributions
	Slide 16
	A technicality
	A technicality- Cont.
	Additive Process
	Multiplicative Process
	A technicality
	The difference between log and signed log
	Sampling for modeling and validation
	Why Sampling?
	Test and training splits
	Creating a sample group column
	Reproducible sampling is not just a trick for R
	Record grouping
	Slide 29
	Data provenance
	Key Takeaways

