
Topic 16: Validation

CITS3403 Agile Web Development

Semester 1, 2018Getting MEAN with Mongo,

Express, Angular and Node,

Chapter 11

• Writing a bug free application is critical to to success of

that application.

• There are various ways to eliminate bugs.

– Code inspections: having peers critically examine your code and

make suggestions.

– Formal verification: building precise specifications of

correctness, and proving the code meets these specs.

– Testing: Providing test cases of inputs and actions, and

expected behaviors.

• Testing is the most common and what we will focus on

here.

Verification and Validation

• The V-model links types of tests to stages in the

development process.

The V-model

• Unit Tests: test each individual function for to

ensure it behaves correctly (2-5 tests per function)

• Integration Test: Execute each scenario to make

sure modules integrate correctly.

• System Test: Integrate real hardware platforms.

• Acceptance Test: Run through complete user

scenarios via the user interface.

Aim to catch most bugs with unit and integration tests,

and focus on automating these.

Types of test

• We’ll use Mocha as a test framework for our

Express project. To set up:

• npm install --save mocha

• npm install --save assert

• Assert is the assertion library (there are many).

• Create a directory for the tests in the project root:

• mkdir test

Incorporating tests into Express

• Setup tests in the
package.json file.

• test with npm test

• Mocha groups tests
together (describe),

and provides before

and after hooks to

set up tests and

teardown tests.

• The individual test

cases are specified in
an it function.

Anatomy of a test:

• The test is designed for the simple age function.

Running the test:

• When the test is run, Mocha will provide a report:

• There are many assertion libraries: assert is one of

the most basic.

• assert states a property that should hold, and

throws an assertion error if it doesn’t (the test fails).

• The possible operators are:

Assertion libraries:

assert.notDeepEqual(actual,

expected[, message])

assert.notDeepStrictEqual(actual,

expected[, message])

assert.notEqual(actual,

expected[, message])

assert.notStrictEqual(actual,

expected[, message])

assert.ok(value[, message])

assert.strictEqual(actual,

expected[, message])

assert.throws(block[, error]

[, message])

assert(value[, message])

assert.deepEqual(actual,

expected[, message])

assert.deepStrictEqual(actual,

expected[, message])

assert.doesNotThrow(block[, error]

[, message])

assert.equal(actual,

expected[, message])

assert.fail(actual, expected,

message, operator)

assert.ifError(value)

• There are different assertion libraries to suit

different styles of testing.

• chai uses behavior driven development style :

Variations

• should is

also a popular

alternative with

a similar style:

• Web apps are challenging to test because of their

asynchronous nature.

• A function can complete before its callbacks have,

so mocha may report success before an assertion

error could occur.

• Mocha provides a callback function done() that

forces the test to wait until all call backs are done.

Testing Callbacks and Web…

• The database

connections should

be opened and

closed at the start

and end of the test.

• Note we use

deepEqual here

because we are

comparing arrays.

Working with Mongo:

• The npm request package can be used to test that

routes are giving correct responses in integration

tests

Working with web requests.

https://semaphoreci.com/community/tutorials/getting-started-with-node-js-and-mocha

• Testing is an integral part of development.

• You should aim for 100% test coverage. Every line

of code should execute in at least one test.

• Test driven development is a process where you

write tests first, and then write code just to pass the

tests.

• Tests can be integrated into the build environment

in continuous integration: Travis CI or Drone can be

configured so that every time you push an update,

the code is automatically tested and launched (if it

passes.

Using tests in development

• User testing is more

challenging since it

depends on the end

user environment.

• Selenium can be used

to automate browsers

to run test cases.

• PhantomJS is a

headless browser that

can be used for testing

with Mocha

User Tests

Selenium

• A tool set that automates web app testing across platforms

• Can simulate user interactions in browser

• Two components

– Selenium IDE

– Selenium WebDriver (aka. Selenium 2)

Selenium IDE

• Firefox extension

• Easy record and replay

• Debug and set breakpoints

• Save tests in HTML,

WebDriver and other

formats.

Selenium IDE test cases

• Selenium saves all information in an HTML table format

• Each record consists of:

– Command – tells Selenium what to do (e.g. “open”, “type”, “click”,
“verifyText”)

– Target – tells Selenium which HTML element a command refers to
(e.g. textbox, header, table)

– Value – used for any command that might need a value of some kind
(e.g. type something into a textbox)

How to record/replay with Selenium
IDE

1. Start recording in Selenium IDE

2. Execute scenario on running web application

3. Stop recording in Selenium IDE

4. Verify / Add assertions

5. Replay the test.

... or using webdriver you can integrate selenium with
any unit testing scripting language.

You can test functionality, responsiveness and general
usability.

