
Topic 14: Web

Sockets
CITS3403 Agile Web Development

Semester 1, 2018Getting MEAN with Mongo,

Express, Angular and Node,

Chapter 7

• In this lecture we will look at incorporating extra

features into our application:

• First we look at real time events using web sockets.

• Sockets allow live updating of pages, like chats:

Setting up a complete project

• WebSockets allow your client-side JavaScript to

open a persistent connection (stream) to the server.

• This allows real time communication in the

application without having to send HTTP requests.

Websockets

• Websockets are supported in Node via the package

socketIO (see http://socket.io/)

• SocketIO is good for message passing chat or

distributed games.

• For direct video and audio, WebRTC can be used.

• Clients can connect to a socket on a server, and

then the server can push messages to clients.

• The client has a listener architecture so it will

respond to the push immediately.

SocketIO

http://socket.io/

• Sockets need to be added to the project via npm

• npm install –save socket.io

• socket.io uses the http server to listen for messages.

• There are various ways to include sockets, but we’ll

combine it with our model view architecture.

• To simplify things, we’ll bring the MVC and routes

folder into the root:

Sockets in an Express Project

• We create a file socket.js in the root of the project

that is similar to app.js.

• While app.js sets up a server listening for requests

and sending responses, socket.js maintains a set of

sockets and sends messages in response to

events.

Sockets Architecture

• io is a socket server and each client connects

through a socket.

• There is a controller chat.js that supplies the

callback functions to respond to chat events, and a

chat model that allows chats to be logged and

served.

Sockets Architecture cont.

• In this

project the

chat view is

incorporated

into layout

• The socket server is

attached to the http
server in bin/www

just as app is.

• They can both share

the same port.

• The socket server

then responds to

incoming events,

such as
‘connection’

Registering the socket server

• The server

delegates callback

functions to a

controller,
chat.js

• This responds the

connection,

disconnection and

message events.

• It uses a model to

save and load

messages.

Chat controller

• The Chat model is very simple. It just creates a

schema, which is loaded in the same database from
db.js:

Chat model

• The only modification
to db.js is at the final

line to load the chat

schema.

• Those are all the updates required on the backend,

but the front end has to now send and receive

message from the server.

Chat client

• Installing socket.io in

a project places a

javascript folder in the

public directory, which

can be loaded in the

jade file.

• We can then specify

functions to send and

receive messages.

• The chat rendering

can then be done

on the server side

using DOM

manipulation.

• This can be much

neater with some

Bootstrap and

Angular

Jade file

• You can now test with multiple clients sending

messages and receiving messages at the same

time….

Chat output:

• This is sufficient to launch a simple chat. More

details are at: http://socket.io/get-started/chat/

Chat Window…

http://socket.io/get-started/chat/

• Sockets can be used for distributing real time

events such as real-time scoreboards, stock prices,

or weather.

• Implementing user-ids and sessions (next lecture)

can allow you to have private chats between two

users.

• Socket.io allows you to group sockets into

namespaces and rooms, which allows you to

control who can access and post messages.

Other applications for sockets

