
Agile Development

CITS3403 Agile Web Development

Semester 1, 2018From Agile in a Nutshell, by

Jonathan Rassmusson

Further reading: The agile

handbook

What is Agile

• You make a list

• You size things up

• You set priorities

• You start executing

• You update the plan as you go…

How does it work:

Analysis, design, coding testing are

continuous

• Development is iterative

• Planning is adaptive

• Roles blur

• Requirements change

• Working software

How is Agile different

• Agile is a silver bullet

• Agile is anti-documentation

• Agile is anti-planning

• Agile is undisciplined

• Agile requires a lot of rework

• Agile is anti architecture

• Agile doesn’t scale

Agile myths

• User stories describe features

• They are told from the end user point of view.

• These features can be deliver in short units of work.

• They are often written on cards to facilitate

communication

Fundamental approaches: User stories

• Estimation is difficult but essential.

• You should always practice estimating the amount

of time development will take.

Fundamental approaches: estimation

• Iterations are the core of software develpoment.

Fundamental Approaches: Iterations

• Combines the user stories and estimations to build

a feasible plan for delivery.

Fundamental approaches: planning

Unit Testing

• To maintain a design and functionality, we must be

prepared to refactor code.

Refactoring

• Organise code

into manageable

modules.

• Don’t repeat

yourself (DRY)

• Continuous integration keeps the code in a

repository that is automatically maintained and

everyone works on at the same time.

Continuous Integration

• Write tests at the start and then write code to pass

the tests.

• The tests become the defacto documentation for

the system.

Test Driven Development

Types of Agile:

• Good high

organisation

• But not IT

specific

Flavours of Agile

• Easy to

understand and

start

• Very popular

• Not much

engineering

Flavours of Agile

• Detailed engineering

practices

• IT focussed

• Popular with

developers

Flavours of Agile

GIT

• Git is a distributed version control system

• Developed in 2005 by Linus Torvalds

• Now the most widely used version control system in

the world.

• Git is able to manage different branches of a

development, allowing teams to work on the latest

branch, roll back changes, or develop independent

features.

Git Theory

• Git has a decentralised structure. Everyone on the

project has a copy of the history of the project.

• The history of the project is structured as a graph.

Each commit can be undone and replayed

• Git tracks changes in

the current working

directory.

• Changes are added,

then committed, then

pushed to a branch.

• The new code is then

pulled to other spaces.

Git CheatSheet

GIT CheatSheet

GIT operations

• Create a new repository: git init

– adds files monitoring changes, preferences etc.

• Checkout a repo: git clone usr@url:[path]

– copies files and history to a local copy

• The local repo has three trees:

– the working directory (the actual files)

– the index (a set of changes that is ready to commit)

– the head (the last commit you made)

GIT add, commit, push, pull

• Add new files: git add <filename>

– adds file to index

• Commit changes to Head: git commit –m “msg”

– commits changes in index to the head with the msg.

• Push changes to repository:

– git remote add origin <server>

– git push origin master

– adds remote server, and pushes latest commit to it.

• Get latest commit from repo: git pull

GIT branching

• Create a new branch: git checkout –b b1

– creates a new branch that can change independently.

• Switch back to master: git checkout master

– changes to the master branch.

• Delete Branch: git branch –d b1

• Push new branch: git push origin <branch>

• Merge into your branch: git merge <branch>

– merging is automatic, but there may be conflicts.

• To see the differences between two branches:

git diff <b1> <b2>

GIT utilities

• Get a log of commits: git log

• Tag a version: git tag 1.0.0 <commit-id>

– gives a version number to a commit tag.

• Rollback changes: git checkout -- <file>

– returns local file to last commit.

• Delete Branch: git branch –d b1

• Undo all changes and commits: git fetch origin

– then git reset –hard origin/master

• Lots of GUIs, environments exist: GitHub, BitBucket,

GitKraken

GitHub

• GitHub is a service that hosts Git repositories.

• You can develop colaboratively, and use GitHub as a

remote Repo.

• Note: Free GitHub repositories are public, so anyone

can see your code.

• Students are able to get free education accounts,

which allow private repositories.

– https://education.github.com/pack

• Bitbucket is a similar service

https://education.github.com/packgithub

Coordinating Dev Environments

• Git is a great way to link development and

deployment environments:

– Work on your local machine (a laptop) with all the

latest features and branches

– Push commits to GitHub or some central repo

– Pull changes from GitHub to a server environment for

test or deployment

– You can incorporate testing, documenting and

reporting into these workflows.

