WESTERN

¥ AUSTRALIA

Topic 9: Flask Applications

CITS3403 Agile Web Development

Adapted from the Flask Mega-Tutorial, by Miguel Grinberg: Semester 1, 2023
https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial

> WESTERN
Full Stack Development: & AUSTRATIA

* Full stack development refers to developing all parts of a web
application: database, web server, application logic and front end.

* There are various “Full stacks” people use to develop:
— LAMP (Linux, Apache, MySQL and PHP) Y pgthon

— Ruby on Rails
— Django (Python)
 We’re going to use a number of tools in this unit:
— Flask: is a micro framework, that allows us to write our backend
in Python. It contains its own lightweight webserver for

development
— SQLite: is a lightweight database management system

— AJAX and JQuery: We have already seen these. We will use
these for making responsive web pages.

) WESTERN
Full-stack development A& AUSTRALIA

 Fullstack development refers to developing every
part of the web application.

* |t involves knowing all the technologies used from
mobile and front end, (HTML, CSS, javascript
frameworks) though to the backend logic, security
and database models used at the backend.

* Most developers are specialised in one part of the
stack.

FULL STACK DEV

DOJO

Fo=gney [HE UNIVERSITY OF
Development environment A,'%!ﬁ, WESTERIN

« A lot of web development is done from the command line,
since traditionally servers didn’t need a graphical front end.

« We can use Git to develop on laptops and push code to the
server, but we still rely heavily on command line tools.

« By now, every one should have a good text editor that does
syntax highlighting etc, some tool to allow them to compile
or run code with the command line, and a browser with
developer tools to view source, and debug javascript.

 You should also have a Git client to regularly commit your
code, and push to others.

F=¥==] THE UNIVERSITY OF
4

Getting started with Flask & {STRALIA

Flask is a micro-framework to run on the
server, but it will run on any machine, and

haS feW dependenCieS_ drtnf@drtnf-ThinkPad:$ python3 -m venv tmp-env

drtnf@drtnf-ThinkPad:$ source tmp-env/bin/activate
tmp-env) drtnf@drtnf-ThinkPad:$ pip install flask

You will require python3 installed in your
operating environment, with pip. EEE———

' ' ' i = Flask(__name__)
Use pip to install venv (virtual environment) @app.route("TT)

first and initialise the environment. def hello():

return "Hell
if __name__ ==

Now install Flask. Any required modules will ot
be preserved by the virtual-environment.)

You can now run flask by typing f1lask run, app-PY

but the app doesn’t know what to run. mpsanyiscsteviat iiakens g taskiu

Use a production WSGI server instead.

Write the following into app . py, run the G e

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

program again.

Use a browser to see your app in action! \ D localhost SRS
(http://localhost:5000) Hello world!

L W¥ WESTERN
Application structure %= AUSTRALIA

: , - irom flask import Flask
Our app.py file doesn'’t look like app = Flask(name)

much. It has a method to return ‘Hello @app.route("/")

world!’ that is decorated with B oL I
Qapp.route('/"). if__nmm__’-”'”

app.run(

app Is an instance of the class
Flask. When it runs it listens for v
requests, and if the route matches a °PP
decorator, it executes the

-Py

corresponding function. A request T —
object is passed to the method. S
. ef login():
The return Of the fUﬂCtIOﬂ beCOmeS ‘ usgrn;;e = request.args.get('username’)

password = request.args.get('password')

the response.
But this structure doesn’t scale well.

THE UNIVERSITY OF

2'. WESTERN

A better application structure %=# AUSTRALIA

A better structure is to create a package app

that will contain all the code we need for the
web app.

lthasan init .py file to create an
instance of the Fl1ask class.

We can create a file routes. py, to contain
the request handlers.

Finally, we need a file at the top level to

Import the app. We set the system variable
FLASK APP tothe name of this file, so flask

knows what to run.

Now the app package can contain files for
handling routes, modules, templates, tests
and anything else our application requires.

app/ _init_.py: Flask application instance

app/routes.py: Home page route

microblog.py: Main application module

Server-side vs Client Side Rendering & AUsTraLIA

There are two approaches to serving L TRl
dynamic HTML: o g
* The server can build the HTML when it >
receives the request and send to client. o) T
* The server can send JS and an HTML |
skeleton to the client, and the client can —
then request JSON and build the HTML ‘WD -
using AJAX and JQuery. o
Server Side Rendering is the traditional - —
approach.

Client Side Rendering is more flexible and
allows greater support for non-browser
devices.

Flask supports both forms very well.

WESTERN

Client Side Rendering %= AUSTRALIA

« For client side rendering, the client first [ESEI_—_—

needs to access a HTML template and [

Some JS > __pycache__

] . . > api

» Flask projects have a static directory to v static

serve non-dynamic files, including HTML, [N

CSS, JS and |mages bootstrap.min.css

JS bootstrap.min.js
« \We can then have flask redirect all © demo.htmi
. . % favicon.ico

requests for a file to the static html we > index hmi

Want to Serve Js jqu?ry—3.4.1.min.js
 We now need HTML and JS for the client 5 EIRLE

<> spa.html

: wordle.css
from import
<> wordle.html

@app.route('/speed wordle'

Js wordle.js
def speed_wordle
return

> templates

> wordle

WESTERN
HTML and JS for the Client & AUSTRALIA

charset="utf8"
name="viewport" content="width=device-width, initial-scale=1"
tylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/css/bootstrap
src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"

cdn. bootstrapcdn.com/bootstrap/3.4.1/js/bootstrap.min.js" i W r I I C I

This is a simple wordle clone demonstrating DOM manipulations and AJAX calls.
class="container"

class="jumbotron"

Wordle Clone:

This is a simple wordle clone demonstrating DOM manipulations and AJAX calls.

_ Enter your guess here. The
et Gy e word changes every 2 minutes
Enter your guess here. The word changes every 2 minutes so hurry up: SO hurry up: 50 seconds to gO!

id="time_left"p seconds to go!
class='wordle' id="guesses"

class="container col-sm-4"

dal" id="end_game" style="display: none;"
modal-dialog"
class="modal-content"

class="modal-header"
class="modal-title">Game Over:
type="button" id="close" class="btn btn-default">Close

class="modal-body" id="congrats"

class="container"> :

WESTERN
HTML and JS for the Client %= AUSTRALIA

- table_data = [1;
current_guess = 0;
current_cell =

function isAlpha(c){
return /~[A-Z1$/i.test(c);

document.addEventListener("keydown", evt =>{
functic init(){ t key = evt.key;
t table = document.getElementById("“guesses"); if(key.length==1 & isAlpha(key) & current_cell<5 && current_guess<6){
table.innerHTML=""; table_datalcurrent_guess] [current_cell].innerHTML=key.toUpperCase();
t tbody = document.createElement("tbody"); current_cell++;
for(let i = 0; i<6; i++){ 59 +
let row_data = [1; else if((key=="Delete" || key == "Backspace") && current_cell>0 && current_guess<6){

let row = document.createElement("TR"); current_cell—;
A . . table_datalcurrent_guess] [current_celll.innerHTML=" ";
for(let j = 0; j<5; j++){

¥
let cell = document.createElement("TD"); else if(key == "Enter" && current_cell == 5 && current_guess<6){
cell. innerHTML=" "; 6 let guess=
row.appendChild(cell); et i = 0; i<5; i++){
row_datalj]l = cell; 6 guess = guess + table_datalcurrent_guess][i].innerHTML;
¥
table_datalil = row_data; 69 const xhttp = new XMLHttpRequest();

tbody.appendChild(row) ;
} xhttp.open("GET", "https://drtnf.net/wordle_guess?guess="+guess, true);

tbody.children[@].classList.add("active"); el = TnEEEnleD 4
! 1 result = JSON.parse(xhttp.responseText).outcome;

table.appendChild(tbody); let sum = @

current_guess = 0; for(let i = @; i<5; i++){

current_cell = 0; 6 if(result[il==2){

getTimeLeft(); sum+=result[i];

document.getElementById('close").addEventListener("click", nct 8 table_datalcurrent_guess] [i].classList.add('correct');
document.getElementById("end_game").style.display = 'none‘; }

}); 80 if(result[il==1){

table_datalcurrent_guess] [i].classList.add('misplaced");

}

. }

ction getTimelLeft(){ let tbody = document.getElementById("guesses").firstChild;

const xhttp = new XMLHttpRequest(); 5 tbody.children[current_guess++].classList.remove('active');
xhttp.open("GET", "https://drtnf.net/wordle_time_left", true); if(sun==10){
xhttp.onload = function(e) { document.getElementById('end_game').style.display="block";
time_left = JSON.parse(xhttp.responseText).time_left; document.getElementById('congrats').innerHTML="Congratulations!";
let x = setInterval(function() { 89 }
document.getElementById("“time_left").innerHTML = time_left—; ¢ else{
if(time_left<0){ e current_cell = 0;

clearInterval(x); if(current_guess>5){
Amse() document.getElementById('end_game').style.display="block";
H

3 document.getElementById('congrats').innerHTML="0ut of guesses!";
}
}, 1000); else tbody.children[current_guess].classList.add('active');
}

R C }
xhttp.send(); ¢ xhttp.send();
}
};

THE UNIVERSITY OF

:
And routes to service the AJAX request & {STRALIA

app > wordle > wordle.py > ...
il from app import app route for handling wordle guesses
from app.api.errors import bad_request, error_response B
from flask import jsonify, url_for, request, g, abort
import time, random

@app-route('/wordle_guess',methods=['POST"', 'GET'])
def wordle_guess():
check_time()
data = request.args or {}
if 'guess' not in data not datal'guess'].isalpha() len(datal'guess']) != 5:
update_delta = 120 50 return bad_request('Guess must be a five letter word')
[l f = open('./app/wordle/answer.txt"','r")

w§rds = ' ; secret = f.read()
with open('./app/wordle/fives.txt','r') as word_file: 53 f.close()

for word in word_file: response = jsonify({'outcome':wordle(datal'guess'].upper(), secret.upper())})

words.append(word[:-1]) BE response.status_code = 201
return response

Wordle guess array
Renews the selected word every update delta seconds v
St def wordle(guess, target):
ef check_time(): 62 answer = [0]*5
f = open('./app/wordle/last_update.txt','r") el ice = LUl
) for i in range(5):
last_update = int(f.read()) : 17 Eiess =i
f.close() answer[i] = 2
now = int(time.time()) 6 target_free[i] = False
if (now-last_update) > update_delta: 58 for i, ¢ in enumerate(guess):
last_update = now for j, d in enumerate(target):
= if c==d and target_freel[j]l and answer[il==0:
secret = words[random. randrange(len(words))] answerli] = 1
f = open('./app/wordle/answer.txt', " 'w"') target_freelj] =
f.write(secret) 3 return answer
f.close
f = open('./app/wordle/last_update.txt','w")
f.write(str(last_update))
f.close
return update_delta-(now-last_update)

Gives time remaining for the current puzzle
@app.route('/wordle_time_left', methods=['GET'])
wordle_time_left():
response = jsonify({'time_left':check_time()})
response.status_code = 201
return response

https://drtnf.net/static/wordle.html

Server-side Rendering ~ +& AUSTRALIA

app/routes.py: Return complete HTML page from view function

Server-side rendering listen for requests,
and uses python functions to build html
pages to return as a response.

However, this mixes the logic and the
presentation.

A typical pattern to use is to have a

template or views directory to have some

html that references objects and code, and a TS
rendering function that will take a template ==
and some data and builds the html i I
dynamically. L e

<td>{{p['lab']}}</td>
<td>{{p['time']}}</td>
{% if not current_user.is

Flask uses jinja for this task, but there are e G e
many alternatives (pug, handlebars, :
typescript)

>

THE UNIVERSITY OF
2 WESTERN
Y AUSTRALIA

Using Jinja

* We separate presentation and logic app/templatesindex. html: Main page template
by having a template directory to e
contain annotated html, and specify a
rending function in the routes.py file

 When a request is received flask will
look for the matching template (in the
directory templates) and convert the
template to pure html using named
variables in the function.

« Two {{curly braces}} are used to
distinguish html from python
variables, and jinja does the
substitution

app/routes.py: Use render_template() function

Jinja Loops and Conditionals =/

Depending on the parameters

passed, we may want to display

the data differently.
Jinja provides loops and

conditionals to allow the display

to adapt to data.
For example, it is common to

pass in an array of objects, and

then present them in a table.

Or we may want the display to

vary depending on who is
logged in.

F=¥==] THE UNIVERSITY OF

W¥ WESTERN
AUSTRALIA

<h3>Registered prOJect 115t</h3>
<table class='t tabl

<tr>
<th>Project Team</th>

<th>Project Description</th>
<th>Demo location</th>
<th>Demo time</th>
{% if not current_user.is_anonymous %}
<th>Action</th>
{% endif %}
</tr>
{% for p in projects%}
<tr>
<td>{{p['team']}}</td>
<td>{{p['description']}}</td>
<td>{{p['lab']}}</td>
<td>{{p['time']}}</td>
{% if not current_user.is_anonymous %}
<td>
{% if p['project_id']== current_user.project_id %}
delete
editE/a>
{% endif %}
</td>
{% endif %}
<ftr>
{% endfor %}
</table>

@app.route('/")

@app.route('/index')

def index():
print('index')

if current_user.is_authenticated:
projects = get_all projects()
else:
projects = []
return render_template('index.htm

, projects=projects)

THE UNIVERSITY OF

. . W¥ WESTERN
Jinja Control Statements & AUSTRALIA

app/templates/index.htm/. Conditional statement in template

* The syntax for control statements is to
use {% braces %}.

« Conditionalsuse if, else, elif, as
well as endi £, since whitespace
scoping doesn’t work for html.

« We can also use for and while loops for
iterating through collections.

Sy e S I e e app/templates/index.html: for-loop in template

Jinja Inheritance &4 AUSTRALIA

app/templates/base.html: Base template with navigation bar

« Since we often want the titles, menus,
footers in an application to be the same,
we can have the templates inherit from
each other.

« The block xxxx is left unspecified for
other templates to fill in, and they can

extend the ase template by just
specifying how they would fill in xxxx

app/templates/index.html: Inherit from base template

« This principle is
refered to as DRY:
dont repeat yourself

WESTERN

Forms %ms? AUSTRALIA
* To build PUT requests,
we typically use forms.
Flask uses the
WTForms module to Flask apps should have a secret key
validate Post Requests to protect against cross site request

forgery (CSRF). You can set in

* Install flask-wtf with app.py, but there are better ways.

pip and create a new
flle |n app, forms . py app/forms.py: Login form

* There are three parts to
the form: the form class,
the template containing
the form, and the route
for processing the form.

Rendering Forms “a=# AUSTRALIA

| extends

pA
Jinja works with flask-wtf to put S b
the appropriate input elements i e e
in the page. e " lrom bk taotn

<p>

The form.hidden_tag() is used (.f:'j Lifk i
to protect against CSRF attacks

{% endfor %}
</p>

The form elements are defined ; i
by the forms.py class b e

{% for error m.pin.errors %}
[{{ error}}]

Attributes can be appended to I ot
the elements in brackets. <> ({forn. renenber_ne() 3} ((forn. renenber_ne.label

</div>

If a form doesn’t validate, the ol Al e s it e S e s e i

(% endblock %)

errors are accessible in a list,
but are rendered server side. gy NS

Faster client side validation can et 10 cerr tobane name="csrf_token® type="hidden* value="TaZNASOOLHDGZVENCED
be applied using javascript. el orstudrt. b st obercptee

</p>

<h2>Login</h2>

The url_for()maps back from the
function name to the route.

(p)
<label for="pin">Pin Code</label>

<input id="pin" name="pin" size="4" type="password" value="">

</p>
<p> <input id="remember me" name="remember me" type="checkbox" value="y"> <label for="ren
<p> <input id="submit" name="submit" type="submit" value="Sign In"></p>
</div>
</form>
<p>To register click here</p>

_ W¥ WESTERN
Processing Forms %’ AUSTRALIA

TO process a form, We Conﬁgure a app/routes.py: Receiving login credentials
route for the POST method.

We define an instance of the form
class, for both rendering and wrapping
posted data.

A GET request won'’t validate, so it will
jump to the last line, and render the

page.
If a POST request validates, a flash

message is created, and the page is
redirected to the index.

The flash messages are just a list that
can be accessed by other pages.

To actually check a users passwords,
we need a database (next lecture).

THE UNIVERSITY OF

WESTERN

App Configuration &5 AUSTRALIA

Storing the secret key in a source file isn’t
a good idea. Secret keys and user
credentials should always be manually
configured, and never part of the
repository. Setting them as system
variables is a good approach.

Create a configuration file to store all
configuration variables. This can then be
loaded when the app runs.

The environment variables can also store
database locations and credentials, and
keys for third party services

(virtual-environment) drtnf@drtnf-ThinkPad:$ export SECRET_KEY='poor_secret'
(virtual-environment) drtnf@drtnf-ThinkPad:$S echo SSECRET_KEY

poor_secret

(virtual-environment) drtnf@drtnf-ThinkPad:S flask shell

Python 3.6.7 (default, Oct 22 2018, 11:32:17)

[GCC 8.2.06] on linux

pp: app [production]

Instance: /Dropbox/ArePricks/Dropbox/Tim/teaching/2019/CITS3403/pair-up/instance
>>> print(app.config['SECRET_KEY'])

poor_secret

>>

config.py: Secret key configuration

app’/ _init__.py: Flask configuration

=¥ THE UNIVERSITY OF

Debugging and the Flask Shell*& AUSTRALIA

The FIaSk She” iS a USGfUl l E 2sgmode‘t; app‘, ?bStudent, Project, Lab

&

%

Way to teSt Sma” funCtionS 4 japp.shell_context _processor

. . . . 5 def make_shell_context():
and thelr |ntegrat|0n Wlth 6 return { :db, :Student, :Project,
flask, without using a , | _ |
virtual-environment) drtnf@drtnf-ThinkPad:$ export SECRET_KEY='poor_secret
browser. ;:})EEE:}:rg:vironwcnt} drtnf@drtnf-ThinkPad:$S echo SSECRET_KEY

(virtual-environment) drtnf@drtnf-ThinkPad:$ flask shell
ython 3.6.7 (default, Oct 22 2018, 11:32:17)

It loads the flask app, and all (Gcc 8.2.6] on Unus

\pp: app [production]
1stance: /Dropbox/ArePricks/Dropbox/Tim/teaching/2019/CITS3403/palr-up/instance

the dependencies, but 2 print (app.contial SECRET KEV.1)
doesn’t need the server = s

running- YOU can set the builtins.NameError

shell context to have
variables predefined when s
you start the shell.

Debug mode is also very s
useful. Set the system T
variable FLASK_DEBUG=1

to get a trace of the errors

when the server crashes.

Suggested Reading @ WESTERIN

Read “What is Code” by Paul Ford:

There are bugs in your code! Click the line of code that looks like
it's bug-free. But be careful: Any time you don't fix a bug, a new
one is born.

1
.

var salesPlusFour = 4 + sales; for (var 1 = 8; 1 < 19; i++)

var salesPlusFour = "4" + sales; for (var 1 = 8; 1 < 10 i++)

http://www.bloomberg.com/graphics/2015-paul-ford-what-is-code/

