
Agile Development

CITS3403 Agile Web Development

Semester 1, 2021From Agile in a Nutshell, by
Jonathan Rassmusson
Further reading: The agile
handbook

Agile Goals

Agile is a way to manage projects. It can be used
for virtually anything, but it was founded in
software development. This handbook focuses on
agile for software development, but many of
the principles can be expanded to other fields.

Agile breaks down larger projects into small,
manageable chunks called iterations. At the end of
each iteration (which generally takes place over a
consistent time interval) something of value is
produced. The product produced during each
iteration should be able to be put into the world to
gain feedback from users or stakeholders.

Unlike Waterfall project management, which is
strictly sequenced: you don’t start design until
research is done and you don’t start development
until the designs are signed off on; agile has
designers, developers and business people
working together simultaneously.

As made popular by the “Agile
Manifesto”, agile values:
l Individuals and interactions

over processes and tools
l Working software over

comprehensive documentation
l Customer collaboration over

contract negotiation
l Responding to change over

following a plan

12 Key Principles

1) Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.

2) Deliver working software frequently, from a couple of weeks to a couple of months, with a preference
to the shorter timescale.

3) Welcome changing requirements, even late in development. Agile processes harness change for the
customer’s competitive advantage.

4) Business people and developers must work together daily throughout the project.
5) Build projects around motivated individuals. Give them the environment and support they need, and

trust them to get the job done.
6) The most efficient and effective method of conveying information to and within a development team is

face-to-face conversation.
7) Working software is the primary measure of progress.
8) Agile processes promote sustainable development. The sponsors, developers, and users should be

able to maintain a constant pace indefinitely.
9) Continuous attention to technical excellence and good design enhances agility.
10)Simplicity--the art of maximizing the amount of work not done-- is essential.
11)The best architectures, requirements, and designs emerge from self-organizing teams.

12)At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its

behavior accordingly.

What is Agile

• You make a list
• You size things up
• You set priorities
• You start executing
• You update the plan as you go…

How does it work:

Analysis, design, coding testing are
continuous

• Development is iterative

• Planning is adaptive

• Roles blur

• Requirements change

• Working software

How is Agile different

• Agile is a silver bullet
• Agile is anti-documentation
• Agile is anti-planning
• Agile is undisciplined
• Agile requires a lot of rework
• Agile is anti architecture
• Agile doesn’t scale

Agile myths

• User stories describe features
• They are told from the end user point of view.
• These features can be deliver in short units of work.
• They are often written on cards to facilitate

communication

Fundamental approaches: User stories

• Estimation is difficult but essential.
• You should always practice estimating the amount

of time development will take.

Fundamental approaches: estimation

• Iterations are the core of software develpoment.

Fundamental Approaches: Iterations

• Combines the user stories and estimations to build
a feasible plan for delivery.

Fundamental approaches: planning

Unit Testing

• To maintain a design and functionality, we must be
prepared to refactor code.

Refactoring

• Organise code
into manageable
modules.

• Don’t repeat
yourself (DRY)

• Continuous integration keeps the code in a
repository that is automatically maintained and
everyone works on at the same time.

Continuous Integration

• Write tests at the start and then write code to pass
the tests.

• The tests become the de facto documentation for
the system.

Test Driven Development

Types of Agile:

• Good high
organisation

• But not IT
specific

Flavours of Agile

• Easy to
understand and
start

• Very popular
• Not much

engineering

Flavours of Agile

• Detailed engineering
practices

• IT focused
• Popular with

developers

Flavours of Agile

It's really important to establish a common expectation among the group. If everyone wants to do it
the night before it's due, that's not ideal, but its ok as long as everyone's on board. If you can't
establish common expectations then it's possible to break the group up, but that's really a last resort.

Some ways to handle this:
1. Manage expectations. It's probably a better strategy to set modest goals that the entire group

can contribute to, rather than expect people to suddenly become elite coders.
2. Keep a log of meetings/chats and responsibilities. If things fall apart, and you have been trying,

this will salvage your marks at least.
3. Break the project up into small units, to work on individually, and make sure that you deliver your

allocation, and then try to help others with theirs.
4. Share your knowledge. It's not your responsibility to teach others, but it is part of the agile

methodology. Your team are an asset and a resource that need to be optimally leveraged. Find
achievable tasks for everyone, and a short instructional session early can be a big benefit later on.

There will be an opportunity during the demonstrations to discuss who did what, and what the
challenges were, and marks among the group may be split accordingly. Some people are happy to
admit they were passengers and take a hit in the mark. Agile development is about dealing with
adversity and adjusting, not avoid adversity all together.

Message to Agile Web Dev Class, 2022:

GIT

• Git is a distributed version control system
• Developed in 2005 by Linus Torvalds
• Now the most widely used version control system in

the world.
• Git is able to manage different branches of a

development, allowing teams to work on the latest
branch, roll back changes, or develop independent
features.

Git Theory

• Git has a decentralised structure. Everyone on the
project has a copy of the history of the project.

• The history of the project is structured as a graph.
Each commit can be undone and replayed

• Git tracks changes in
the current working
directory.

• Changes are added,
then committed, then
pushed to a branch.

• The new code is then
pulled to other spaces.

Git CheatSheet

GIT CheatSheet

GIT operations

• Create a new repository: git init
– adds files monitoring changes, preferences etc.

• Checkout a repo: git clone usr@url:[path]
– copies files and history to a local copy

• The local repo has three trees:
– the working directory (the actual files)
– the index (a set of changes that is ready to commit)
– the head (the last commit you made)

GIT add, commit, push, pull

• Add new files: git add <filename>
– adds file to index

• Commit changes to Head: git commit –m “msg”
– commits changes in index to the head with the msg.

• Push changes to repository:
– git remote add origin <server>
– git push origin master

– adds remote server, and pushes latest commit to it.
• Get latest commit from repo: git pull

GIT branching

• Create a new branch: git checkout –b b1
– creates a new branch that can change independently.

• Switch back to master: git checkout master
– changes to the master branch.

• Delete Branch: git branch –d b1
• Push new branch: git push origin <branch>
• Merge into your branch: git merge <branch>

– merging is automatic, but there may be conflicts.
• To see the differences between two branches:
git diff <b1> <b2>

GIT utilities

• Get a log of commits: git log
• Tag a version: git tag 1.0.0 <commit-id>

– gives a version number to a commit tag.
• Rollback changes: git checkout -- <file>

– returns local file to last commit.
• Delete Branch: git branch –d b1
• Undo all changes and commits: git fetch origin
– then git reset –hard origin/master

• Lots of GUIs, environments exist: GitHub, BitBucket,
GitKraken

GitHub

• GitHub is a service that hosts Git repositories.
• You can develop colaboratively, and use GitHub as a

remote Repo.
• Note: Free GitHub can be public or private. IF they

are public, anyone can see your code.
• Students are able to get free education accounts,

which allow private repositories.
– https://education.github.com/pack

• Bitbucket is a similar service, from Atlassian

https://education.github.com/packgithub

Coordinating Dev Environments

• Git is a great way to link development and
deployment environments:
– Work on your local machine (a laptop) with all the

latest features and branches
– Push commits to GitHub or some central repo
– Pull changes from GitHub to a server environment for

test or deployment
– You can incorporate testing, documenting and

reporting into these workflows.

Git and the project

• Git should be used to manage your project and you git repository will need
to be submitted.

• You will be assessed on your commit history, and the readme should
contain a report of your work in markdown (a lightweight subset of HTML).

