
Document Object
Model
CITS3403: Agile Web Development

2023, Semester 1Unit Coordinator: Tim French

Introduction

• We’ve seen JavaScript core
– provides a general scripting language
– but why is it so useful for the web?

• Client-side JavaScript adds collection of objects, methods and properties that allow scripts to
interact with HTML documents
¡ dynamic documents
¡ client-side programming

• This is done by bindings to the Document Object Model (DOM)
– “The Document Object Model is a platform- and language-neutral interface that will allow programs

and scripts to dynamically access and update the content, structure and style of documents.”
– “The document can be further processed and the results of that processing can be incorporated

back into the presented page.”
• DOM specifications describe an abstract model of a document

– API between HTML document and program
– Interfaces describe methods and properties
– Different languages will bind the interfaces to specific implementations
– Data are represented as properties and operations as methods

• https://www.w3schools.com/js/js_htmldom.asp

https://www.w3schools.com/js/js_htmldom.asp

The DOM Tree

• DOM API describes a tree structure
– reflects the hierarchy in the XTML document
– example...

<html xmlns = "http://www.w3.org/1999/xhtml">
<head>
<title> A simple document </title>

</head>
<body>

<table>
<tr>

<th>Breakfast</th>
<td>0</td>
<td>1</td>

</tr>
<tr>

<th>Lunch</th>
<td>1</td>
<td>0</td>

</tr>
</table>
</body>

</html>

http://www.w3.org/1999/xhtml

Execution Environment

• The DOM tree also includes nodes for the execution environment in a browser
• Window object represents the window displaying a document

– All properties are visible to all scripts
– Global variables are properties of the Window object

• Document object represents the HTML document displayed
– Accessed through document property of Window
– Property arrays for forms, links, images, anchors, …

• The Browser Object Model is sometimes used to refer to bindings to the browser, not
specific to the current page (document) being rendered. This includes:

– Type of browser
– User’s history
– Cookies
– Screen size
– Location (url)
– Geolocation
– Local (browser) storage

DOM Tree in More Detail

Source: tech.irt.org

JavaScript and the DOM

• Elements in HTML document correspond to nodes on the tree
• These nodes bind to JavaScript Element objects
• Attributes of elements become named properties of element node objects

– <input type=“text” name=“address”>
– The object representing this node will have two properties

• type property will have value “text”
• name property will have value “address”

• Node objects can be addressed in several ways:
– arrays defined in DOM 0

• forms, elements, images, links,...
• individual elements are specified by index

– by name
– by id

Method 1: Using DOM Address

• Consider this simple form:
<form action = "">

<input type = "button" name = "pushMe">

</form>
• The input element can be referenced (assuming this is the first form in the document) as

document.forms[0].element[0]

• Problem: index may change when the form changes!

Method 2: Using Name Attributes or Type

• Using the name attributes for form and form elements
– Reference using Java/JavaScript “.” notation

• Example
<form name = "myForm" action = "">

<input type = "button" name = "pushMe">

</form>

• Referencing the input

document.myForm.pushMe

• In order to work, all elements from the reference
element up to, but not including, the body must
have a name attribute
• Names are required on form elements by server-side
scripts
• You can also select all elements by tag name.

Method 3: Using ID

• Using getElementById with id attributes
(cf CSS)

– id attribute value must be unique for an
element

• Example:
– Set the id attribute of the input element

<form action = "">
<input type="button" id=“on">
</form>

– Then use getElementById

document.getElementById(“on")

Other Access Methods

• A range of other “short cut”methods may be provided
• Eg. getElementsByTagName

var tables = document.getElementsByTagName("table");
alert("This document contains " + tables.length + " tables");

• Checkboxes and radio buttons have an implicit array, which has their name as the array name
<form id = "topGroup">
<input type = "checkbox" name = "toppings"

value = "olives" />
...
<input type = "checkbox" name = "toppings"

value = "tomatoes" />
</form>
...
var numChecked = 0;
var dom = document.getElementById("topGroup");
for index = 0; index < dom.toppings.length;index++)

if (dom.toppings[index].checked]
numChecked++;

DOM Tree Traversal and Modification

• As we’ve seen each element in an HTML document has a corresponding Element object
in the DOM representation

• The Element object has methods to support
– Traversing the document

• that is, visiting each of the document nodes
– Modifying the document

• for example, removing and inserting child nodes

• Various properties of Element objects are related nodes, eg:
– parentNode references the parent node of the Element
– previousSibling and nextSibling connect the children of a node into a list
– firstChild and lastChild reference children of an Element

• These would be text nodes or further element nodes contained in the element
• childnodes returns a NodeList (like an array) of children

Example

<script>
// This recursive function is passed a DOM Node object and checks to see if
// that node and its children are XHTML tags; i.e., if the they are Element
// objects. It returns the total number of Element objects
// it encounters. If you invoke this function by passing it the
// Document object, it traverses the entire DOM tree.

function countTags(n) { // n is a Node
var numtags = 0; // Initialize the tag counter
if (n.nodeType == 1 /*Node.ELEMENT_NODE*/) // Check if n is an Element

numtags++; // If so, increment the counter
var children = n.childNodes; // Now get all children of n
for(var i=0; i < children.length; i++) { // Loop through the children

numtags += countTags(children[i]); // Add and recurse on each one
}
return numtags; // Return the total number of tags

}
</script>

<!-- Here's an example of how the countTags() function might be used -->

<body onload="alert('This document has ' + countTags(document) + ' tags')">
This is a <i>sample</i> document.
</body>

<!-- From: JavaScript: The Definitive Guide (4th Ed) -->

Example: JavaScript vs DOM

• Blue JavaScript, red DOM...

// point anchorTags to a DOM NodeList

var anchorTags = document.getElementsByTagName("a");

// display the href attribute of each element in the NodeList

for (var i = 0; i < anchorTags.length ; i++){

alert("Href of this a element is : " + anchorTags[i].href + "\n");
}

From: The DOM and JavaScript: http://developer.mozilla.org/en/The_DOM_and_JavaScript

DOM Tree Modification

• There are also methods that allow you to modify or construct a DOM tree. eg:
– The insertBefore method inserts a new child of the target node
– replaceChild will replace a child node with a new node
– removeChild removes a child node
– appendChild adds a node as a child node at the end of the children

you can construct part or whole document dynamically!
l This is what front-end frameworks like Angular or React do: they dynamically build the

entire document on the client side.
l Document writing methods include:

– open()
– close()
– write()
– writeln()

Example

<script type="text/javascript">
function createNewDoc() {
var newDoc=document.open("text/html","replace");
var txt="<html><body>Learning about the DOM is FUN!</body></html>";
newDoc.write(txt);
newDoc.close();

}
</script>

<!-- From: http://www.w3schools.com -->

The canvas Element

• The canvas Element
– Creates a rectangle into which bit-mapped graphics can be drawn using JavaScript
– Optional attributes: height, width, and id

• Default value for height and width are 150 and 300 pixels
• The id attribute is required if something will be drawn

<canvas id = ″myCanvas″ height = ″200″
width = ″400″>

Your browser does not support the canvas
element

</canvas>

• This can be used to create interactive animations
and games in just HTML and javascript:

https://developer.mozilla.org/en-US/docs/Games/Tutorials/2D_Breakout_game_pure_JavaScript
https://www.w3schools.com/graphics/tryit.asp?filename=trygame_default_gravity

https://developer.mozilla.org/en-US/docs/Games/Tutorials/2D_Breakout_game_pure_JavaScript

Example

• The navigator Object
– Properties of the navigator object allow the script to determine characteristics of the

browser in which the script is executing
– The appName property gives the name of the browser
– The appVersion gives the browser version

Navigator

• In addition to the Document Object Model there is also a Browser Object Model (BOM).
• This is not supported by a fixed standard, but is a set of features most browsers support, to let

developers tailor apps for different browser contexts.
• These include:

– Browser type and version (typically misreported)
– The language used in the browser
– The geolocation of the user (https and with user consent)
– The History of the user.
– Any cookies associated with the current domain.

• These properties are access through document.navigator.

Cookies
• Cookies are a way of websites identifiying returning users. As HTTP requests are stateless,

the server normally won’t remember any previous requests from a client.
• A cookie is a small text file containing key-value pairs that is stored in the browser.
• The cookie will be sent with a request to the website it is associated with (and only that

website).
• Cookies for the current web-page are accessible through the DOM/BOM.
• Cookies are specified with an expiry date or will be deleted when the broswer is closed.

Web Storage

l A larger and more secure alternative to cookies is Web Storage
(new since HTML5).

l This allows a website to store information about a user within the
users browser and retireve it at a later time.

l This can be particularly useful for large forms where there is a
chance a session could end before the user submits the form.

Event-Driven Programming

• Event-driven programming or event-based programming
– programming paradigm in which the flow of the program is determined by sensor outputs or

user actions (mouse clicks, key presses) or messages from other programs
– not new - from hardware interrupts to multi-process operating systems to distributed

programming to Java listeners to Exceptions...

• Fundamental to web-based programming
– client-server model
– stateless programming
– controlled from browser (user) end

• Event driven programming drives many of the technologies we will cover in this unit:
– Sockets
– AJAX
– Javascript callbacks

Event-Driven Programming

• Batch program

read a number (from the keyboard) and store it in variable A[0]
read a number (from the keyboard) and store it in variable A[1]
print A[0]+A[1]

– synchronous (program waits for input)
• Event-driven program

set counter K to 0
repeat {

if a number has been entered (from the keyboard) {
store in A[K] and increment K
if K equals 2 print A[0]+A[1] and reset K to 0

}
}

– asynchronous (program polls for input)

Event-Driven Programming

• Program “loop” divided into two distinct tasks
– event detection
– event handling

• Application programmer may be freed from event detection (and hence loop) in a number of
ways
– embedded programs may use interrupts - handled by hardware (no loop needed)
– programming environment or execution environment may do this for you - in our case the

browser
¡ allows programmer to focus on event handling

• Browser “listens” (polls or interrupts) for events
– user actions (eg. <enter>, mouse clicks, ...)
– server responses (eg. page loaded, AJAX responses, calculation, ...)

• When it recognises an event, it invokes the appropriate code to handle the event (event
handler), passing information about the event as required

• But how does the browser know what code to call?
• For the browser to know what code to invoke for different actions, code elements must be

registered with, or bound to, events
• What defines the events, their meanings, and parameters?

¡ the DOM!

Event Registration

• DOM 0 provides two ways to register an event handler:
1. Assign the event handler script to an event tag attribute

<input type = “button” id = “myButton”
onclick = “alert(‘You clicked my button!’);” />

onclick is a tag attribute for the button “click” event

Usually the handler script is more than a single statement and called as a function:

<input type = “button” id = “myButton”
onclick = “myButtonHandler();” />

2. Assign the event handler to the appropriate property of the element’s object

<input type = “button” id = “myButton” />
.
.

document.getElementById(“myButton”).onclick =
myButtonHandler;

– statement must follow both handler function and form element so (JavaScript) interpreter has seen both
– note: just function name, not function call (or string)

Events and their Tag Attributes

Tag Attributes and their Tags

• Most event tag attributes can appear in several tags
• Meaning (action) depends on both the tag attribute and the tag in which it appears. Eg.

– an element gains “focus” when the mouse is passed over it and left clicked, or user tabs to
element

– lose focus when it passes to another element - called blurring
‣ different meaning (action) for <a> and <textarea>

Handling Events from Body Elements

<body onload=”load_greeting();”>
<p />

</body>

function load_greeting () {
alert(“You are visiting the home page of\n” +

“Pete’s Pickled Peppers \n” + “Welcome!!!”);
}

Mouseover events

• Any HTML element can be have a mouseover event associated with it.

Handling Events from Text Box and Password
Elements

• An important use of events is to validate the content of forms, without using bandwidth and
time to access a remote server.

• By manipulating the focus event the user can be prevented from changing the amount in a
text input field

Note: this is possible to
work around

l Copy the page but leave
out the validation code

l Simulate an HTTP
request directly with
socket-level
programming

If the validity of data is
important, the server
needs to check it

DOM 2 Event Model

• DOM 2 is defined in modules
• The Events module defines several submodules

– HTMLEvents and MouseEvents are common

• An event object is passed as a parameter to an event handler
– Properties of this object provide information about the event
– Some event types will extend the interface to include information relevant to the subtype. For

example, a mouse event will include the location of the mouse at the time of the event

Event Flow

• DOM 2 defines a process for determining which handlers to execute for a particular event
• The event object representing the event is created at a particular node called the target

node
• The process has three phases…
• In the capturing phase each node from the document root to the target node, in order, is

examined.
– If the node is not the target node and there is a handler for that event at the node and the

handler is enabled for capture for the node, the handler is executed

• Then all handlers registered for the target node, if any, are executed
• In the bubbling phase each node from the parent of the target node to the root node, in

order, is examined
– if there is a handler for that event at the node and the handler is not enabled for capture for the

node, the handler is executed

Some event types are not allowed to bubble: load, unload, blur and focus among the HTML
event types

Event Propagation

• As each handler is executed, properties of the event provide context
– The currentTarget property is the node to which the handler is

registered
– The target property is the node to which the event was originally directed
– currentTarget is always the object listening for the event; target is

the actual target that received the event
• One major advantage of this scheme over DOM 0 is that event handling

can be centralized in an ancestor node
• For example, a calculator keyboard will have a number of digit buttons

– In some GUI frameworks, a handler must be added to each button separately
– In DOM 2, the buttons could be organized under a single node and the

handler placed on the node

Event Handler Registration

• Handlers are called listeners in
DOM 2

• addEventListener is used to register
a handler, it takes three parameters

– A string naming the event type
– The handler
– A boolean specifying whether the

handler is enabled for the capture
phase or not

<p>A function is triggered when the user
is pressing a key in the input field.</p>
<input type="text" onkeydown= f(event)”>
<script>
function f(e) {
alert("You hit the "+e.keyCode+” key");
}
</script>

