
Javascript: Intro

CITS3403 Agile Web Development

2023 Semester 1
Unit Coordinator: Tim French

JavaScript
JavaScript is a high-level, dynamic, untyped, and interpreted programming language. It
has been standardized in the ECMAScript language specification. Alongside HTML and
CSS, it is one of the three essential technologies of World Wide Web content
production. JavaScript is prototype-based with first-class functions, making it a multi-
paradigm language, supporting object-oriented, imperative, and functional
programming styles.
•Language specification: http://www.ecmascript.org/
•Tutorial: http://www.w3schools.com/js/

Components
•Core

– The heart of the language
•Client-side

– Library of objects supporting browser control and user interaction
•Server-side

– Library of objects that support use in web server

http://www.ecmascript.org/
http://www.w3schools.com/js/

Uses of JavaScript

• Provide alternative to server-side programming
– Servers are often overloaded
– Client processing has quicker reaction time

• JavaScript can work with forms

• JavaScript can interact with the internal model of the web page
(“Document Object Model” - more on this soon...)

• JavaScript is used to provide more complex user interface than plain
forms with HTML/CSS can provide

• JQuery is one of the most popular development libraries.

• Node is a server-side javascript environment

• Linux in javascript??? http://jslinux.org/

http://jslinux.org/

Event-Driven Computation

• Users actions, such as mouse clicks and key presses, are referred to as events

• The main task of many JavaScript programs is to respond to events

• For example, a JavaScript program could validate data in a form before it is
submitted to a server

– Caution: It is important that crucial validation be done by the server. It is relatively easy
to bypass client-side controls

– For example, a user might create a copy of a web page but remove all the validation
code.

Javascript execution environments

There are two main execution environments for JavaScript:

•The browser: every modern web browser is able to execute
javascript, and many javascript functions refer explicitly to an
HTML container or window. To test and execute Javascript,
you need a html file to call the javascript function, and a
browser to open that file.

•NodeJS: Node is a server side javascript environment. This
is useful since we can run the same code the client uses on
the server. This is more like a tradition console environment
you may have seen (eg, python).

•You can install Node on your local machine from
https://nodejs.org/en/

https://nodejs.org/en/

HTML/JavaScript Documents

There are several ways to include javascript in a web-page:
l Including the code in the head, inside a script tag.
l Including the code inside the body, inside a script tag.
l Providing a url to an external file containing the code.

General Syntactic Characteristics

• Identifiers
– Start with $, _, letter
– Continue with $, _, letter or digit
– Case sensitive
– camelCase preferred

• Comments
– //
– /* … */

• Reserved words...

Statements should be terminated with a semicolon
The interpreter will insert the semicolon if missing and the statement seems to be complete
Can be a problem:

return
X;

Like HTML, the environment will tolerate incorrect code as much as possible.

Data Types

• Javascript has the following data types
– Numbers
– Strings
– Booleans
– Null
– Undefined
– Objects

– Functions
– Arrays
– Date
– RegExp
– Math

Numeric Literals

• Number values are represented internally as double-precision floating-point
– There is no integer type in here. According to the spec., they are all double-precision

64-bit format IEEE 754 values. So you might have to be a little careful with arithmetic:
0.1 + 0.2 = 0.30000000000000004

– For advanced mathematical operations you can use the built-in Math Math object
var value = Math.sin(3.5); // gets the sine of 3.5

• You can convert a string to an integer by using the parseInt() function –
var i = parseInt(“124”, 10); // i now contains 124

• NaN (Not a number) is returned if the argument string to parseInt() is non-numeric:
var value = parseInt(“hello”, 10); // value now contains NaN

• NaN is toxic –as an input to any mathematical operation the result will also be NaN
var value = NaN + 5; // value is now NaN

• You can check for NaN by using the built-in isNaN() function –
isNaN(value); // will return true if value is NaN

• Javascript also has some special values denoting Infinity and –Infinity
var infinity = 1 / 0; // infinity now contains Infinity

var negativeInfinity = -1 / 0; // as described above

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/isNaN
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Infinity

The Number Object

• Properties

Operations resulting in errors return NaN
– Use isNaN(a) to test if a is NaN

• toString method converts a number to string

Type 2 – Strings

• Strings in Javascript are sequence of Unicode characters, where each
character is represented by a 16-bit number. This is a very good news to
anyone who has to deal with internationalization.

• A String literal is delimited by either single or double quotes
– There is no difference between single and double quotes
– Certain characters may be escaped in strings

• \’ or \” to use a quote in a string delimited by the same quotes
• \\ to use a literal backslash
• \n new line
• \t tab

etc
– The empty string ‘’ or “” has no characters

• They have some useful properties and methods for manipulation like
length, charAt(), replace(), toUpperCase(), toLowerCase() etc.

• Javascript doesn’t have any Character data-type. So if you want to
represent a single character, you need to use a string of length 1.

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/length
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/charAt

String Properties and Methods

• One property: length
– Note to Java programmers, this is not a method!

• Character positions in strings begin at index 0

Other Primitive Types

• Null
• null is a reserved word
– A variable that is intentionally not assigned a value has a null value
– Using a null value usually causes an error

• Undefined
– The value of a variable that is not declared or not assigned a value

• Javascript distinguishes between null, which is a special type of object that
indicates a deliberate non-value, and undefined, which is an object of type
undefined that indicates an uninitialized value.

• Boolean
– Two values: true and false

• Javascript has a boolean type, with possible values of true and false. Any
value can be converted to a boolean according to the following rules –

• false, 0, the empty string, NaN, null, and undefined all become false
• all other values become true.

Javascript will apply these rules whenever it expects a boolean, but you can
coerce these type conversion by using the Boolean() function.

Declaring Variables

• JavaScript is dynamically typed, that is, variables do not have declared types
– A variable can hold different types of values at different times during program

execution
• A variable is declared using the keywords var, let, const (or nothing)

var counter, index, pi = 3.14159265, rover = "Palmer",
stop_flag = true;

const x = 6, y = 7;
let z = x+y;
zz = z;

• If a variable remains uninitialized, then its type is undefined.
• An important difference from other languages like Java is that in Javascript, you

don’t get block-level scope, only functions have scope. So if a variable is defined
using var inside an if or for block, it will be visible to the entire function.

• let and const do have block level scope.
• In Javascript, there is no strong type-checking like Java. You can declare a

variable to hold an integer and then you can assign a string to that same
variable var value = 5; value = “Hello”; // No error

Assignments and Operators

• Plain assignment indicated by =
• Compound assignment with: += -= /= *= %= …
• a += 7 means the same as a = a + 7
• Like Java, you can use + to concatenate two different strings. You can also

use it to convert a string to a number
let value = + “123”;

• Numeric Operators
– Standard arithmetic
+ * - / %

– Increment and decrement
-- ++

• String Operators
– Concatenation
+

• Boolean Operators
– !, &&, ||

Implicit Type Conversion

• JavaScript attempts to convert values in order to be able to perform
operations

• Numeric Context
– 7 * “3”
– null is converted to 0 in a numeric context, undefined to NaN

• Logical/Boolean Context
– 0 is interpreted as a Boolean false, all other numbers are interpreted a

true
– The empty string is interpreted as a Boolean false, all other strings

(including “0”!) as Boolean true
– undefined, NaN and null are all interpreted as Boolean false

• typeof(x) returns “number” or “string” or “boolean” for primitive
types

• typeof(x) returns “object” for an object or null
• Two syntactic forms

• typeof x
• typeof(x)

Comparisons

• Comparisons in Javascript can be made using >, <, >=, <=, ==, ===, != and
!== operators. These works for both strings and numbers.

• The == operator performs type coercion if you give it two different types
“dog” == “dog” // true

1 == true // true!

‘abc’ == [‘abc’] // true!!

• The === operator performs returns true only if both operands are
equal, and of the same type.
“dog” === “dog” // true

1 === true // false

‘abc’ === [‘abc’] // false

Control Statements

• A compound statement in JavaScript is a sequence of 0 or more statements
enclosed in curly braces

• A control construct is a control statement including the statements or
compound statements that it contains

1
8

Control Structures
• Javascript has for, while, do-while loops just like

Java. It also has if-else, switch statements and
ternary operator. Switch statements can compare
string values. You can also use an expression in the
case statement.

• The && and || operators use short-circuit logic, which
means whether they will execute their second
operand depends on the first. This is useful for
checking for null objects before accessing their
attributes –
// && will return Object if it’s null

var property = Object &&
Object.getProperty();

• Or for setting their default values –
var name = otherName || “default”;

l The if-then and if-then-else are similar to
that in other programming languages, especially
C/C++/Java

switch (expression) {
case value_1:

// statement(s)
case value_2:

// statement(s)
...
[default:

// statement(s)]
}

Object Orientation and JavaScript

• JavaScript is object-based
– JavaScript defines objects that encapsulate both data and processing
– However, JavaScript does not have the same inheritance nor subtyping (therefore

polymorphism) as normal OOP such as Java or C#.
• JavaScript provides prototype-based inheritance

– See, for example this Wikipedia article for a discussion:
http://en.wikipedia.org/wiki/Prototype-based_languages

• Objects are collections of properties
• Properties are either data properties or method properties

– Data properties are either primitive values or references to other objects
– Primitive values are often implemented directly in hardware
– Method properties are functions (more later)

• The Object object is the ancestor of all objects in a JavaScript program
– Object has no data properties, but several method properties

http://en.wikipedia.org/wiki/Prototype-based_languages

Arrays
• Arrays are lists of elements indexed by a numerical value
• Array indexes in JavaScript begin at 0
• Arrays can be modified in size even after they have been created

• Eg

2
1

Array Object Creation
• Arrays can be created using the new Array method

– new Array with one parameter creates an empty array of the specified number of
elements
new Array(10);

– new Array with no parameter creates an empty array
var a = new Array();
a[0] = “dog”; a[1] = “cat”; a[2] = “hen”;
console.log(a.length); // outputs 3

– new Array with two or more parameters creates an array with the specified
parameters as elements
new Array(1, 2, “three”, “four”);

• Literal arrays can be specified using square brackets to include a list of
elements

var alist = [1, “ii”, “gamma”, “4”];

• It is better to avoid the “new” keyword where possible
• Elements of an array do not have to be of the same type 2

2

Characteristics of Array Objects

• The length of an array is one more than the highest index
• You can iterate over an array using this length property, or you can use

for….in construct
for(var i in a)

console.log(a[i]);
• Assignment to an index greater than or equal to the current length simply

increases the length of the array
– a[100] = “lion”; console.log(a.length);
– (Note: errors may go unnoticed.)

• Only assigned elements of an array occupy space
– Suppose an array were created using new Array(200)
– Suppose only elements 150 through 174 were assigned values
– Only the 25 assigned elements would be allocated storage, the other 175 would

not be allocated storage
• If you query a non-existent array index, you get undefined –

console.log(a[90]) // outputs undefined
2
3

Array Methods

• join returns a string of the elements in the array
• reverse ….reverses the array
• sort …. sorts the array, can take a comparator function as an

argument
• concat concatenates 2 or more arrays
• slice creates 2 arrays from 1 array
• splice inserts a group of elements at a given index
• delete replaces an element at an index with undefined

Associative Arrays index on Strings and are actually Objects. These oeprations
are not available to them:
var arr = [];
arr[“name”] = “Bob”;

2
4

• push: Add to the end
• pop: Remove from the end
• shift: Remove from the front
• unshift: add to the front

Function Fundamentals
• Function definition syntax

– A function definition consists of a header followed by a compound statement
– A function header:

• function function-name(optional-formal-parameters)
• Function call syntax

– Function name followed by parentheses and any actual parameters
– Function call may be used as an expression or part of an expression

• Functions must be defined before use in the page header (or linked in an
external file)

2
5

• return statements
– A return statement causes a function to cease execution and control to pass to

the caller
– A return statement may include a value which is sent back to the caller
– If the function doesn’t have any return statement, or uses an empty

return with no value, then undefined is returned.

Functions
• Along with the objects, functions are the core components in

understanding Javascript. We can also treat functions as objects.
The most basic function is as follows

function add(x, y){
var total = x+y;
return total;

}
• You can call the above function with no parameter as well. In

such case, they will be set to undefined.

Functions are Objects
• Functions are objects in JavaScript (or first class functions)
• Functions may, therefore, be assigned to variables and to object properties

– Object properties that have function name as values are methods of the object

2
7

Example

function fun() {
console.log("This surely is fun!");

}
ref_fun = fun; // Now, ref_fun refers to

// the fun object
fun(); // A call to fun
ref_fun(); // Also a call to fun

Local Variables
• “The scope of a variable is the range of statements over which it is visible”
• A variable not declared using var has global scope, visible throughout the page,

even if used inside a function definition
• A variable declared with var outside a function definition has global scope
• A variable declared with var inside a function definition has local scope, visible

only inside the function definition
– If a global variable has the same name, it is hidden inside the function definition

– A variable declared with let or const has block level scope.

2
8

Parameters
• Parameters named in a function header are called formal parameters
• Parameters used in a function call are called actual parameters
• Use arguments to access non-formal parameters

2
9

Parameters are passed by value
For an object parameter, the reference is
passed, so the function body can actually
change the object
However, an assignment to the formal
parameter will not change the actual
parameter

function fun1(my_list) {
var list2 = new Array(1, 3, 5);
my_list[3] = 14; //changes actual

parameter

my_list = list2; //no effect on
actual parameter

return my_list;
}

var list = new Array(2, 4, 6, 8)
fun1(list);

Parameter Checking

• JavaScript checks neither the type nor number of parameters in a function
call

– Formal parameters have no type specified
– Extra actual parameters are ignored (however, see below)
– If there are fewer actual parameters than formal parameters, the extra formal

parameters remain undefined
• This flexibility is typical of many scripting languages

– different numbers of parameters may be appropriate for different uses of the
function

• A property array named arguments holds all of the actual parameters,
whether or not there are more of them than there are formal parameters

3
0

The sort Method
• A parameter can be passed to the sort method to specify how to sort

elements in an array
– The parameter is a function that takes two parameters
– The function returns a negative value to indicate the first parameter

should come before the second
– The function returns a positive value to indicate the first parameter

should come after the second
– The function returns 0 to indicate the first parameter and the second

parameter are equivalent as far as the ordering is concerned
• Example:

3
1

Constructors
• Constructors are functions that create and initialize properties for new

objects
• A constructor uses the keyword this in the body to reference the object

being initialized
• Object methods are properties that refer to functions

– A function to be used as a method may use the keyword this to refer to the
object for which it is acting

3
2

Functions (Recursive)
• Like any other languages, you can write recursive

functions in Javascript. However, this creates a problem
if the function is anonymous. How would you call a
function without its name? The solution is using named
anonymous functions -

var ninja = {
yell: function cry(n) {

return n > 0 ? cry(n-1) + "a" : "hiy";
}

};

console.log(ninja.yell(5)); // outputs hiyaaaaa

Objects
• Javascript objects are simply collections of name-value pairs. As

such, they are similar to HashMaps in Java. An object may be
thought of as a Map/Dictionary/Associative-Storage.

• If a variable is not a primitive (undefined, null, boolean, number or
string), its an object.

• The name part is a string, while the value can be any Javascript
value – including more objects.

Accessing Object Properties

• Just like Java, an object’s properties can be accessed using
the dot operator -
– Obj.name = “Tim French”

• And using the array-like index –
– Obj[“name”] = “Dr French”;

• Both of these methods are semantically equivalent.
• The second method has the advantage that the name of the property

is provided as a string, which means it can be calculated at run-
time. It can also be used to set and get properties with names that
are reserved words.

• As functions are first class objects, you can also update methods at
runtime.

Dynamic Properties
• Create my_car and add some properties

// Create an Object object
var my_car = new Object();
// Create and initialize the make property
my_car.make = "Ford";

// Create and initialize model
my_car.model = "Contour SVT";

• The delete operator can be used to delete a property from an object
• delete my_car.model

3
6

for-in loop Syntax
for (identifier in object)

statement or compound statement
The loop lets the identifier take on each property in turn in the object
for (var prop in my_car)
console.log("Key: ", prop, "; Value:",my_car[prop]);
Result:
Name: make; Value: Ford
Name: model; Value: Contour SVT

Object-orientation in Javascript

• Javascript doesn’t have classes, so its object-oriented approach
doesn’t match that of other popular OOP languages like Java, C# etc.
Instead, it supports a variation of Object-oriented programming
known as Prototype-based Programming.

• In prototype-based programming, classes are not present, and
behavior reuse (equivalent to inheritance in Java) is accomplished
through a process of decorating existing objects which serves as
prototypes. This model is also known as class-less, prototype-
oriented or instance-based programming.

• Just like Java, every object in Javascript is an instance of the object
Object and therefore inherits all its properties and methods.

The this keyword
• When used inside a function, this refers to the current object. What that

actually means is specified by the way in which you called that function.
• In the global scope of a browser it refers to the window displaying the HTML.
• In Node, it refers to the execution environment.
• If you called it using the dot notation or bracket notation on an object, that

object becomes this. Otherwise this refers to the global object (the window
object). For example

s = makePerson("Simon", "Willison")
var fullName = s.fullName;
console.log(fullName());

// will output undefined undefined

The new keyword
• new is strongly related to this. What it does is it creates a brand new

empty object, and then calls the function specified, with this set to that
new object. Functions that are designed to be called by new are called
constructor functions.

• When the code new Person(…) is executed, the following things happen
–

1. A new object is created, inheriting from Person.prototype.
2. The constructor function Person is called with the specified

arguments and this bound to the newly created
object. new Person is equivalent to new Person (), i.e. if no
argument list is specified, Person is called without arguments.

3. The object returned by the constructor function becomes the result
of the whole new expression. If the constructor function doesn't
explicitly return an object, the object created in step 1 is used
instead. (Normally constructors don't return a value, but they can
choose to do so if they want to override the normal object creation
process.)

Function objects reuse
• Every time we are creating a

person object, we are creating
two new brand new function
objects within it. Wouldn’t it be
better if this code was shared?
There are two ways in which
code can be shared. The first
way is the following

function personFullName() {
return this.first + ' ' + this.last;

}
function personFullNameReversed() {

return this.last + ', ' + this.first;
}
function Person(first, last) {

this.first = first;
this.last = last;
this.fullName = personFullName;
this.fullNameReversed =
personFullNameReversed;

}

• The second (and best) way is to
use the prototype

function Person(first, last){

this.first = first;

this.last = last;
}
Person.prototype.fullName = function() {

return this.first + ' ' + this.last;
}
Person.prototype.fullNameReversed =

function() {

return this.last + ', ' + this.first;
}

The prototype

• Person.prototype is an object shared by all instances of Person. It
forms a part of a lookup chain (or, prototype chain) : any time you
attempt to access a property of Person that isn’t set, Javascript will
check Person.prototype to see if that property exists there instead. As
a result, anything assigned to Person.prototype becomes available to
all instances of that constructor via the this object. The root of the
prototype chain is Object.prototype.

• This is an incredibly powerful tool. Javascript lets you modify
something’s prototype at anytime in your program, which means you
can add extra methods to existing objects at runtime.

Adding methods at run time using
prototype

var s = “Issa";
String.prototype.reversed = function(){

var r = "";
for (var i = this.length - 1; i >= 0; i--)
{

r += this[i];
}
return r;

}
s.reversed(); // will output assi

“This can now be reversed".reversed()
// outputs desrever eb won nac sihT

Javascript can also use prototypes to implement inheritance. A subclass can be defined
to have the prototype of a superclass, and then the implementation of the methods can
be overwritten in the subclass prototype..

Inner functions
• JavaScript function declarations are

allowed inside other functions
function Example(){

var a = 1;

function oneMoreThanA(){

return a + 1;

}

return oneMoreThanA();

}

What does Example() return?

• A closure is the local variables for a
function – kept alive after the
function has returned.

• Using inner functions we can
use one of the most powerful
abstractions Javascript has to
offer – closure. A quick quiz,
what does this do –

function makeAdder(a) {
return function(b){

return a + b;
}

}

x = makeAdder(5);
y = makeAdder(20);

console.log(x(6));
// ?

console.log(y(7));
// ?

Javascript closure
• Here, the outer function (makeAdder) has returned, and hence common

sense would seem to dictate that its local variable no longer exist. But they
do still exist, otherwise the adder function would be unable to work.

• In actuality, whenever Javascript executes a function, a scope object is
created to hold the local variables created within that function. It is initialized
with any variables passed in as function parameters.

• This is similar to the global object that all global variables and functions live
in, but with a couple of important differences: firstly, a brand new scope
object is created every time a function starts executing, and secondly, unlike
the global object these scope objects cannot be directly accessed from your
code.

• So when makeAdder is called, a scope object is created with one
property: a, which is the argument passed to the function. It then returns a
newly created function.

• Normally JavaScript's garbage collector would clean up the scope object
created for makeAdder at this point, but the returned function maintains a
reference back to that scope object. As a result, the scope object will not be
garbage collected until there are no more references to the function object
that makeAdder returned.

Javascript IO
• Standard output for JavaScript embedded in a browser is the window displaying the

page in which the JavaScript is embedded
• Writing to the document object is now considered bad practice. For simple

debugging use
console.log(“The result is: ”, result, “
”);

• To read, you can use alert or confirm. To get input you can use prompt.
• In NodeJS you can access stdin, stdout, and stderr through the process

object. Eg:
const readline = require('readline');

const rl = readline.createInterface({

input: process.stdin,
output: process.stdout});

rl.question('What do you think of Node.js? ', (answer) => {
console.log('Thank you for your feedback:', answer);

rl.close();});

4
5

Debugging in the Browser
• JavaScript errors are detected by the browser. We will look at Chrome, but

other browsers offer similar functionality:

4
6

•DevTools allows
you to browse
code.

•Console allows
you to interact
with the code
and the page.

•Breakpoints
and debugger;
command allow
you to interact
with the code as
it executes.

