Software Process

CS307 Professional Computing
What is a software process?

- A set of activities or tasks that are followed to develop or enhance some software.
- Common activities in all software processes are:
 - Analysis and specification: determining what the system should do functionally and technically and what constraints may apply.
 - Development - production of the software system
 - Testing - checking that the software is what the customer wants and that it functions as specified
 - Enhancement and maintenance - changing the software in response to changing demands, bugs that are found, etc.
What is a software process model?

- A formalized specification of the software process, the tasks that will be undertaken and the items that will be produced.
- Mostly this is about common sense and codified best practice.
- Each organization will tailor the software process to their individual needs.
What is a software process model? (cont...)

• Historically, several generic software process models have been described but most are based on either
 • The waterfall model
 • Separate and distinct phases of specification and development
 • Iterative/evolutionary model
 • Each step is iterated until some point and steps can take place in parallel.
 • Formal systems development
 • A mathematical system model is formally transformed to an implementation
Waterfall model

- Requirements definition
- System and software design
 - Implementation and unit testing
 - Integration and system testing
 - Operation and maintenance

Slide 5
Waterfall model problems

- The drawback of the waterfall model is the difficulty of accommodating change after the process is underway
- Inflexible partitioning of the project into distinct stages
- This makes it difficult to respond to changing customer requirements
- Therefore, this model is only appropriate when the requirements are well-understood
Iterative/Evolutionary Process

- Each step is iterated until an agreed point.
 - Organized around minor and major milestones.
- Steps can proceed in parallel in a limited fashion.
- Prototypes are used to explore requirements and design.
Iterative/Evolutionary process

- **Problems**
 - Have to agree on where to stop iterating.
 - Possibility that delivery times slip.
 - Easy acceptance of new requirements may lead to feature creep.

- **Applicability**
 - General
Two Processes Described

- We are going to look at two different styles of process methodology
- First is based on process based on that used at Microsoft
- Second is based on process used in some more established Open Source projects (e.g. Mozilla)
Microsoft Process

• Teams are organized into following roles:
 • Product Unit Manager
 • The manager – ultimate business and technical responsibility
 • Project Manager
 • Interface with customer, writes specs, deals with developers and test
 • Software Test Engineer
 • Very capable engineers – write tests, make sure product does what it should
 • Software Development Engineer
 • Writes the software
 • Designers
 • UI type things.
 • Misc: Marketing, Legal, etc.
Microsoft Process

- Software lifecycle is arranged around a series of Milestones
- M0 – inception phase: investigations on requirements, feasibility, technical issues, etc.
 - Early specs may be written at this stage.
 - Specs are written by PMs with developers and testers
 - Project plans are developed by PM, Development and Test
 - Developers may prototype at this stage
Microsoft Process

- **M1 – coding phase**
 - Specs are refined and “frozen”
 - Development of initial product is done
 - Test frameworks are written and product starts being tested.
 - Product is eventually released as an Alpha
 - Either internally as “dog food” or to select customers for feedback
 - Focus groups, usability trials, etc.

- **M2 – coding phase iteration**
 - Specs are updated with enhancements from customer and user feedback
 - Developers implement changes
 - Testers implement new tests – scalability and stress tests conducted
 - Product is released as another Alpha or Beta
Microsoft Process

- M3 – product release
 - Product is stabilised and all bugs resolved
 - Packaging and installation written (installation started in M1)
 - Product is released as a series of release candidates RC1, RC2, etc.
 - Product goes “gold” - eventually shipped
 - Everyone has a party.

- Lots of things about this process
 - Flexibility (what is done in what Milestone – how many Milestones)
 - Iteration, product can change radically between milestones depending on feedback, change in circumstances, etc.
 - Nightly builds – software is built every night and stable releases released often so that people can test
Open Source Process

• Very similar to Microsoft Process in many ways
• Requirements are gathered in a number of different ways
 • Typically from the developer who starts the project
 • Numbers of customers voting on a feature
 • Direct contribution of a feature (patches or code submission)
 • Project administrators or leads may decide on what feature gets accepted but mostly down to developers.

• Roles are collapsed into single individuals
 • Larger projects have distinct roles e.g. OpenOffice.org
Open Source Process II

- Code is worked on for some release milestone
 - Code is released essentially once it has been checked in
- Product is stabilized around official releases
- Communication between developers and users largely done by email
- Projects more structured if there is industry participation (Netscape for Mozilla, Sun Microsystems for OpenOffice.org)
- System works incredibly well. According to the theory of Engineering practice – it shouldn't!
How does this apply to the project?

- We will be adopting a Microsoft-style approach to the process.
- Teams will be organized around
 - Program Managers (2)
 - Developers (3)
 - Testers (2)
- Generally all the team can participate in gathering requirements but only Program Managers really need to.
- Each of the deliverables are effectively mini-milestones.
- Projects will be marked on effective implementation of the process as much as the end product.