
How to Git Good: 
Experiences From the 

Industry
BY DANIEL COSTANTIN



Before I Begin
The views and opinions expressed in this presentation are that of my own and do not reflect that
of my employers (past and present).

This presentation is based on my own experience, research and experimentation.



Presentation Overview
1. Who am I?

2. Project management and planning strategies.

3. Git branching, Gitflow, Git commits, pull requests and issue tracking.

4. GitHub actions and AWS CI / CD pipeline.

5. Questions.



• Daniel Costantin

• Industry Experience
• Senior Platform Engineer at Harvest Technology (1 year)
• Senior Associate at PricewaterhouseCoopers Australia (5 years)
• Casual Academic (tutor) at Edith Cowan University (2 years)

• Education
• Master of Cyber Security - Edith Cowan University
• Bachelor of Commerce (Business Information Technology and Systems) –

Curtin University

Who am I? – This Guy!



Cloud Focused

Cyber Security 
Focused

Who am I? – This Guy! (Continued)



Main Focus of this Presentation
GitHub branching, planning and managing group
workflows in with regular commits.

Continuous Integration and Continuous Delivery
of your code.



Project Planning
• By far the most important thing.

• Most common thing that is overlooked.

• Without proper planning, your project will fail!



Project Management Strategies



Project Management Strategies (Continued)

Sprint 1 Sprint 2 Sprint 3



Project Management Strategies (Continued)

Sprint 1

Sprint 2

Sprint 3

Sprint 4



What is Agile?
• A different approach to software development.

• Constant feedback / updates and improvement.

• Promotes speed.

• Small changes.

• Break down large tasks into smaller ones.

• Fail fast, fail often.



Managing Your Project



Example Jira Board



Example Trello Board



Example Trello Boards

The Dev Board The KANBAN 
Board

Build a 
Barker MVP

35 Example 
Trello Boards



Example Microsoft Project Board



Examples of Good and Bad Tickets
Add 

authentication

Deploy 
backend

Create staging 
pipeline for the 

document builder 
repository

Create Docker 
container

Compare 
OAuth VS 
OneLogin

Implement 
compliance

Start on 
Logging service

Fix spelling of 
authentication 
failure message

Download 
more RAM

Update website to 
conform to the 

new design 
documentation

Purchase 
hardware

Purchase 
hardware for 

IoT PoC

Optimise function 
to calculate 

personal tax rate

Create unit 
tests for new 

QR code 
generator



Examples of Good and Bad Tickets 
(Continued)

Add 
authentication

Deploy 
backend

Create staging 
pipeline for the 

document builder 
repository

Create Docker 
container

Compare 
OAuth VS 
OneLogin

Implement 
compliance

Start on 
Logging service

Fix spelling of 
authentication 
failure message

Download 
more RAM

Update website to 
conform to the 

new design 
documentation

Purchase 
hardware

Purchase 
hardware for 

IoT PoC

Optimise function 
to calculate 

personal tax rate

Create unit 
tests for new 

QR code 
generator



Git with the Flow
• Provides better control over your code.

• Allows you to have a development, staging and
production environments.

• Very important to your health and sanity.







Additional Branches
• bugfix/

• documentation/

• experimental/

• emergency/

• security/

• staging/

• You can use whatever you like, but you must
all agree on them and their uses.



Examples of Good Branches
• git checkout –b feature/upload-profile-picture

• git checkout –b feature/containerise-application

• git checkout –b bugfix/json-parsing-issue

• git checkout –b release/codename-alpha

• git checkout –b hotfix/incorrectly-declared-class

• git checkout –b experimental/additional-encryption-ciphers

• git checkout –b refactor/authentication-evaluation

• git checkout –b documentation/pipeline-instructions



Examples of Good Branches (Continued)
• git checkout –b feature/ID-1234/add-product-api

• git checkout –b feature/ID-5432/list-product-api



Examples of Bad Branches
• git checkout –b stuff

• git checkout –b stuff2

• git checkout –b test

• git checkout –b feature/implement-iso-compliance-control-page-
10-control-27



Git Branching 
Naming 

Convention 
Best Practices

Gitflow
Workflow

GitHub 
Branching

GitHub 
Branching Best 

Practices

Trunk-based 
Development VS 

Gitflow

Git Branching References



Are you ready to Commit?
• Only commit when you are ready!

• You can stash your code if you are not ready
to commit.

• Like branches, you can agree on the commit
format.



Examples of Good Commits
• git commit -m "Added tax calculation function"

• git commit -m "Added unit tests"

• git commit -m "Imported common libraries"

• git commit -m "feat: example hello world api endpoint"

• git commit -m "feat(1234): added authentication logic to api
endpoint"

• git commit -m "documentation(5432): added docker build and run
commands"



Examples of Bad Commits
• git commit -m "added stuff"

• git commit -m "test"

• git commit -m "test"

• git commit -m "test"

• git commit -m "a"

• git commit -m "b"

• git commit -m "c"



Amazon Web 
Services GitHub 

Repositories

Conventional 
Commits

Git commit 
message 

convention

Microsoft GitHub 
Repositories

Git Commit References



May I Check Your Commit?
• Did you know Git can perform checks before

you commit?

• This is known as Git Hooks.

• huksy is a great example:



Found an Issue?
• Just like project planning, you can record

issues.

• You can use GitHub issues or the previously
mentioned project management tools.

• Please make sure you include as much
information as you can!



Git Issues References

GitHub Issues 
Template

GitHub Pull 
Request 

Template

My GitHub 
Closed Issues



Pull Requests
• There is no right or wrong way to create pull

requests.

• Just like branches and commits, you can make
your own pull request templates.

• You can reference commits, issues and close
issues when a pull request is merged.

• Make sure you delete your branch once the
pull request has been merged!



Bad Pull Request Example



Good Pull Request Example



Pull Request Controls



Pull Requests Courtesy
• Pull requests are opportunities for you to

learn and grow as a developer.

• It is not a blame game or “my code is better
than yours”.

• Call out anything that is clearly bad.

• Be open to improvements.



Resolving Merge Conflicts
• Talk to your fellow developers!

• Refrain from “I know what I’m doing, I don’t
need to ask for help”.

• If you make small changes and merge often,
you can avoid this.

• Don’t make too many different changes in
your branches.



Your Pull Request Process
• What checks (if any) will you include in pull requests?

• Do all pull requests need to be reviewed or by the branch
type?

• What if a developer is not familiar with a particular
language? What happens to approvals?

• Are you allowed to self merge a documentation only pull
request?

• Is there a process if you need to merge a pull request
immediately?



DevSecOps Tips and Tricks



Demonstration Overview

Amazon EC2 Web ServerAWS CodeBuild AWS CodeDeploy

Developer

AWS CodePipeline

GitHub 
Repository

Docker 
Container

Docker Hub

AWS Cloud

GitHub 
Actions



Demonstration Time



Final References

Docker Hub 
Repository

GitHub 
Repository



Questions?


