
Git and GitHub

Dr David Glance

1

Notices

• Some content for this presentation was obtained from:
• https://try.github.io
• https://en.wikipedia.org/wiki/Version_control
• Adrien Thebo http://adrienthebo.github.io/vcs_presentation/ (CC-BY-NC-SA-

3.0)

2

https://try.github.io/
https://en.wikipedia.org/wiki/Version_control
http://adrienthebo.github.io/vcs_presentation/

What is Source Code Control?

• Provides a number of solutions to various problems:
• Allows for the storage of source code

• Problem: source code being on a specific developer’s machine
• Allows for the distribution of source code

• Problem: source code needs to be shared with development team and also public
• Allows versioning and branches of source code

• Problem: a bug needs to be fixed in existing version of product whilst development
continues on next version

• Allows for multiple people to collaborate on code
• Problem: One developer’s changes overwriting another

• Allows for formal review of code and merging
• Problem: Bad code accepted that “breaks the build” or “breaks the product”

What does Source Code Control need to do?

• Manage a collection of files as a repository

• Keep metadata and history of who did what to what files
• Important for auditing and *blame*

• Be able to detect differences in files and potentially merge different changes
• In practice this is difficult

• Allow developer to switch easily between various versions (commits) on the same or other
branches

Source code control system

• SCCS: First code version control system
• Bell Labs in 1972

• Revision Control System (RCS)
• 1982
• Changes of files stored as “diffs”
• Used exclusive locks on single files

• Centralised systems
• CVS Concurrent Version System

• Check out entire project
• Support for multiple users

• SVN Subversion

Then there was Git…

• Created by Linus Torvalds in 2005 for Linux Kernel development

• They were using BitKeeper but this was proprietary

• The name came from Linus Torvalds:

“I’m an egotistical bastard, and I name all my projects after myself. First ‘Linux’, now ‘git’.”

• Really gained popularity through GitHub, web-based hosting service for Git repositories

• GitHub has recently been bought by Microsoft – nobody is sure if this is a good thing or not

Git Basics

• Source is kept in a “repository” or “repo”

• Copying repo from GitHub or other remote server to local disk is called “cloning”

• Updating local files from repo involves a “pull” from remote repo
• Updating remote repo from working directory involves a “push”

• Main branch of repo is called “master” branch
• When a branch is merged into master the process is called a “merge” or this is done using a “Pull

Request”
• PR is a way of getting code reviewed before it is merged

Getting started

• You can use a GUI (GitHub app or IDE like PyCharm, XCode, Visual
Studio) but easier if you learn how to use command line
• Creating a git repository:

8

$ cd ~/DevProjects
$ mkdir myproject
$ cd myproject
$ git init

What did that do?

• Created a directory called .git

9

$ ls
total 24
-rw-r--r-- 1 dglance staff 23 30 Jul 11:15 HEAD
drwxr-xr-x 2 dglance staff 64 30 Jul 11:15 branches
-rw-r--r-- 1 dglance staff 137 30 Jul 11:15 config
-rw-r--r-- 1 dglance staff 73 30 Jul 11:15 description
drwxr-xr-x 12 dglance staff 384 30 Jul 11:15 hooks
drwxr-xr-x 3 dglance staff 96 30 Jul 11:15 info
drwxr-xr-x 4 dglance staff 128 30 Jul 11:15 objects
drwxr-xr-x 4 dglance staff 128 30 Jul 11:15 refs

Key file is exclude

• info/exclude allows you to specify which files you want git to ignore
(also done with a file called .gitignore)

10

$ cat info/exclude
git ls-files --others --exclude-from=.git/info/exclude
Lines that start with '#' are comments.
For a project mostly in C, the following would be a good set of
exclude patterns (uncomment them if you want to use them):
*.[oa]
*~

Add a file

• Create a file and check status

11

$ touch afile.txt
$ ls
afile.txt
$ git status
On branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

afile.txt

nothing added to commit but untracked files present (use "git add" to track)

Add for commit

• Do as it suggests – add the file

12

$ git add afile.txt
$ git status
On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: afile.txt

And commit…

• Commit the file

13

$ git commit –m “Committing initial file”
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 afile.txt

Meanwhile, we switch to GitHub

• We will now create a repository in GitHub
• And then push the files to the “master” branch
• And check they end up on GitHub

14

$ git remote add origin https://github.com/uwacsp/gitlecture1.git

$ git push –u origin master

Counting objects: 3, done.

Writing objects: 100% (3/3), 231 bytes | 231.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To https://github.com/uwacsp/gitlecture1.git

* [new branch] master -> master

Branch 'master' set up to track remote branch 'master' from 'origin'.

https://github.com/uwacsp/gitlecture1.git

Making changes

• Once the file is changed you can repeat the last process of commit
and push, or add any new files
• Demo
• You can delete files using git rm
• *DANGER* Be very careful with this – you can recover from a previous version

but not changes you made since the last commit

15

Getting other people’s updates

• If the repo changes because another developer has changed a file,
you have to get that update before changing it yourself
• People still shouldn’t be generally working on the same files
• Can use branches

16

Using branches

• Create a new branch with:
• git checkout –b anewbranch

• Confirm that you are on that branch
• git branch

• Now, any changes made on the branch will not be seen by anyone
working on master and vice-versa
• Once the branch is ready to merge back into master, we can merge

using:
• first checkout master
• git merge <branch to merge>

17

git commit

18

git branch newImage

19

git checkout newImage; git commit

20

git checkout –b newImage

• same as 2 commands:
• git branch newImage
• git checkout newImage

21

git merge bugFix

22

git checkout bugFix; git merge master

23

Pull Request

24

A pull request allows Git to merge code changes from a
branch into the master (or other branch)

Once code has been pushed to a branch, the option to create
a Pull Request becomes available

Demo…

Pull Requests can be created by collaborators who don’t have
the rights to merge the request. This way, someone can
review the request and changes can be made before it is
accepted and pulled in

git clone

25

git fetch

26

git merge o/master (both steps with git pull)

27

git push

28

Continuous
Integration

29

Git can be used to provide code for continuous
integration

On commit, code can be built and tests run
automatically with the results provided back to
the developer

Can optionally update a Pull Request

Systems that allow this type of integration
include (next slide)

DevOps

30

Git is also fundamental to
deployments of code into test and
production environments

This is now done in an automated
fashion and Git provides an easy
and reliable way of doing this

We cover this in Cloud Computing

Git and
Employment

31

It is worth hosting projects publicly so that you
can use the site as a type of electronic portfolio

They use sites like:

GitHub Stack Overflow (and related)

Many companies are now asking to see evidence
of development skills

When
shouldn’t
you use Git?

32

Git is optimised for
developers working on

code – it *is not* a
collaborative document
management system like

Google Docs, Apple
iCloud, Microsoft Office

360, etc.

If you are working on
documents
collaboratively, Google
Docs is a better option
• People can edit and see

changes from multiple people
in real time

• Changes are on a character by
character level – not just lines

• Git does not work well with
binary files like word
documents

