
CITS3005 Knowledge Representation
Lecture 9: Ontologies

Adapted from Hogan et al’s Knowledge Graphs
https://krbook.org

and Jean Baptiste Lamy’s Ontologies with Python
https://doi.org/10.1007/978-1-4842-6552-9

The University of Western Australia

2023

https://krbook.org
https://doi.org/10.1007/978-1-4842-6552-9

Knowing what vs knowing how

So far, our study of knowledge graphs has focused on knowing what.
That is, we assemble facts in some logical structure from which we ask
queries.
However, if we would like to ask how or why things are true, we need to
understand the causal and abstract relationships surrounding the data.
Ontologies are needed to represent these relationships.

Ontologies (informally)

▶ classes, relationships between them, and constraints that hold
between/for them, with possibly individuals and their relations

▶ as a representation of a particular subject domain

The philosophical study of ontology, concerns the kinds of entities that
exist, the nature of their existence, what kinds of properties they have,
and how they may be identified and categorised: such questions as are
objects infinitely divisible? are causation and correlation the same? what
defines a human being?
It includes mereology (the study of
parthood), and representations of
temporal, spatial, and epistemic in-
formation.

Pragmatically, it consists of tax-
onomies, database schemas, and
knowledge base axioms required to
represent information.

Why Ontologies?

Concretely, formal ontologies can be used to achieve two objectives:

▶ Perform automatic reasoning: Formal ontologies allow logical
deductions to be made, using a reasoner. For example, an ontology
of animals can deduce that a white and black striped animal is
actually a zebra. p

▶ Link knowledge from different sources: Formal ontologies use
Internet addresses (called IRI, Internationalized Resource Identifier)
to identify different entities. Any ontology can refer to any other
and you can define equivalence relationships between existing
entities when the same concept is defined twice.

Ontologies Representations

▶ Several formalisms, but the
web ontology language
OWL most popular.

▶ Protege is a graphical OWL
editor.

▶ OwlReady2 is a python
library for OWL.

▶ Resource Description
Framework (RDF) gives a
structural description of the
ontology.

Ontologies on the Web: the layer cake
▶ XML - Surface syntax, no

semantics

▶ XML Schema - Describes
structure of XML documents

▶ RDF - Datamodel for
“relations” between “things”

▶ RDF Schema - RDF
Semantics (Mereology)

▶ SHACL - RDF Semantics
(Validation)

▶ OWL - RDF Semantics
(even more expressive).

Deductive Knowledge
As humans, we can deduce more from a
knowledge graph than what the edges explic-
itly indicate.
Given the data as premises, and some rules
about the world that we may know a priori,
we can use a deductive process to derive new
data,
These types of general premises and rules,
when shared by many people, form part of
commonsense knowledge and shared by a few
experts in an area, they form part of domain
knowledge.
Machines do not have a priori access to such
deductive faculties; they need to be given for-
mal instructions, in terms of premises and en-
tailment regimes to make similar deductions.

Example

Assume we are interested in knowing the festivals located in Santiago.
The graph pattern returns no results for the graph as there is no node
named Festival, and nothing has the location Santiago.
However, an answer (Nam) could be automatically entailed were we to
state that X being a Food Festival entails that X is a Festival, or that X
having venue Y in city Z entails that X has location Z .

Representing Deductive Knowledge

In computing, and ontology is a concrete, formal representation of what
terms mean within a given domain.
For example, one event ontology may define that if an entity is an event,
then it has precisely one venue and precisely one time instant in which it
begins. A different event ontology may define that an event can have
multiple venues and multiple start times.
Amongst the most popular ontology languages used in practice are the
Web Ontology Language (OWL), recommended by the W3C and
compatible with RDF graphs; and the Open Biomedical Ontologies
Format (OBOF). We will use OWL as it is more widely used.

Interpretations and Models

We interpret the node Santiago in the data graph as referring to the
real-world city that is the capital of Chile. We may further interpret an
edge Arica −→flight Santiago as stating that there are flights from the
city of Arica to this city.
We thus interpret the data graph as another graph, the domain graph,
composed of real-world entities connected by real-world relations. The
process of interpretation, here, involves mapping the nodes and edges in
the data graph to nodes and edges of the domain graph.

We can abstractly define an inter-
pretation of a data graph as being
composed of two elements: a do-
main graph, and a mapping from
the terms of the data graph to those
of the domain graph. The domain
graph follows the same model as the
data graph.

Definitions

A graph interpretation gives the semantics of a graph can be defined.

Definition
Graph interpretation A graph interpretation I is defined as a pair
I = (Γ, ·) where Γ = (VΓ,EΓ, LΓ) is a (directed edge-labelled) graph
called the domain graph and ·I : Con → VΓ is a partial mapping from
constants to terms in the domain graph.

We denote the domain of the mapping ·I by dom(·I). Interpretations that
satisfy a graph are then said to be models of that graph.

Definition

Graph models Let G = (V ,E , L) be a directed edge-labelled graph. An
interpretation I = (Γ, ·I) satisfies G if and only if the following hold:

▶ V ∪ L ⊆ dom(·I);
▶ for all v ∈ V , it holds that v I ∈ VΓ;

▶ for all l ∈ L, it holds that l I ∈ LΓ; and

▶ for all (u, l , v) ∈ E , it holds that (uI , l I , v I) ∈ EΓ.

If I satisfies G we call I a (graph) model of G .

Graph Model: Example

Web Ontology Language

The Web Ontology Language uses RDF as a document interchange
format, so all OWL can be expressed as RDF, but OWL conforms to
description logic specifications.
That is, OWL is RDF with a semantic content.

Ontology features: Individuals

We list the main features supported by OWL for describing individuals,
▶ We can assert (binary)

relations between individuals
using edges.

▶ OWL further allows for
defining relations to explicitly
state that two terms refer to
the same entity.

▶ OWL can define that two
terms refer to different entities.

▶ We may also state that a
relation does not hold using
negation, which can be
serialised as a graph using a
form of reification.

Ontology features: Properties

OWL includes RDFS type defini-
tions, and may also define a pair of
properties to be equivalent, inverses,
disjoint, or a property to be transi-
tive, symmetric, asymmetric, reflex-
ive, or irreflexive relation.
It can can also define the multiplic-
ity of prooperties being functional
(many-to-one) or inverse-functional
(one-to-many). A key for a class,
denotes the set of properties whose
values uniquely identify the entities
of that class. We can relate a prop-
erty to a chain (a path expression
only allowing concatenation of prop-
erties).

Ontology features: Classes
OWL supports RDFS class proper-
ties, and OWL can define classes to
be equivalent, or disjoint.
OWL provides features for defining
novel classes by applying set oper-
ators on other classes, or based on
conditions that the properties of its
instances satisfy:
OWL can define a novel class as
the complement of another class, the
union or intersection of a list of other
classes, or an enumeration of all of
its instances.
OWL can define classes whose in-
stances are some value from a given
class; all values from a given class;
have a specific value; have theself as
a reflexive value; have at least, at
most or exactly some number of val-
ues, or values of a given class.

More Axioms: SWRL

SWRL allows general axioms to be specified in OWL documents.
SWRL (Semantic Web Rule Language) is a language that allows you to
integrate inference rules into ontologies. Rules can be written in the
Protégé editor or in Python, using Owlready, and then executed via the
integrated HermiT or Pellet reasoners.
A SWRL rule includes one or more conditions and one or more
consequences, separated by an arrow “->” (composed of the two
characters: minus and greater than). If the rule has several conditions or
consequences, they are separated from each other by a comma “,” (and)
The elements that make up conditions and consequences are called
atoms, and the same atoms can be used in conditions and in
consequences.

Semantic Conditions

We define models under semantics conditions.

Definition

Semantic condition Let 2G denote the set of all (directed edge-labelled)
graphs. A semantic condition is a mapping ϕ : 2G → {true, false}. An
interpretation I := (Γ, ·I) is a model of G under ϕ if and only if I is a
model of G and ϕ(Γ) is true. Given a set of semantic conditions Φ, we
say that I is a model of G if and only if I is a model of G and for all
ϕ ∈ Φ, ϕ(Γ) is true.

For example, we can define the Has Value semantic condition as:

∀c , p, y((Γ(c , propI , p)∧Γ(c , value I , y)) ↔ ∀x(Γ(x , type I , c) → (x , p, y)))

Here we overload Γ as a ternary predicate to capture the edges of Γ.

Entailment

Like RDFS, the conditions listed in the previous tables give rise to
entailments.
We say that one graph entails another if and only if any model of the
former graph is also a model of the latter graph. Intuitively this means
that the latter graph says nothing new over the former graph and thus
holds as a logical consequence of the former graph.

Definition

Graph entailment Letting G1 and G2 denote two (directed edge-labelled)
graphs, and Φ a set of semantic conditions, we say that G1 entails G2

under Φ – denoted G1 |=Φ G2 – if and only if any model of G1 under Φ is
also a model of G2 under Φ.

OWLReady 2

The get_ontology() function allows you to create an empty ontology
from its IRI (it is preferable to indicate the separator, “#” or “/”, at the
end of the IRI, because Owlready cannot guess it since the ontology is
empty!):

>>> from owlready2 import *

>>> onto = get_ontology("http://test.org/onto.owl#")

Owlready2 includes RDFLib, and you can access the triples through its
default world object:

>>> graph = default_world.as_rdflib_graph()

See https://owlready2.readthedocs.io/en/latest/world.html
for more details.

https://owlready2.readthedocs.io/en/latest/world.html

Defining Classes

To create an OWL class, simply create a Python class that inherits from
Thing. For example, we can create the Bacterium, Shape, and Grouping
classes as follows:

>>> with onto:

... class Bacterium(Thing): pass

... class Shape(Thing): pass

... class Grouping(Thing): pass

OWL properties are actually “classes of relationship”.
Properties inherit from DataProperty, ObjectProperty, or
AnnotationProperty or others.

>>> with onto:

... class has_shape(ObjectProperty, FunctionalProperty):

... domain = [Bacterium]

... range = [Shape]

Creating Individuals

Individuals are created like any other instance in Python, by callin the
class:

>>> my_bacterium = Bacterium()

Owlready automatically assigns a new IRI to the individual, created by
taking the IRI of the ontology and adding the name of the class in
lowercase followed by a number starting at 1:

>>> my_bacterium.iri

’http://test.org/onto.owl#bacterium1’

>>> my_bacterium is onto.bacterium1

True

Modifying Properties

Relationships between individuals and existential restrictions can be
modified like any other attribute in Python. For example, it is possible to
modify an individual’s relationships as follows:

>>> my_bacterium.gram_positive = True

If it is a property of type ObjectProperty, a new instance of the

expected class can be created (here, the Rod class):

>>> my_bacterium.has_shape = Rod()

>>> my_bacterium.has_shape

onto.rod1

>>> with onto:

... class Bacterium(Thing): pass

... class Shape(Thing): pass

... class has_shape(Bacterium >> Shape): pass

... class Bacterium(Thing):

... has_shape = Shape

The save() method allows saving an ontology on disk:
onto.save(file)

Description Logic

In Owlready, restrictions are created with the syntax
property.restriction_type(value), using the same keywords for
restriction types as in Protected:

▶ property.some(Class) for an existential restriction

▶ property.only(Class) for a universal restriction

▶ property.value(individual or data) for a value restriction (also called
role-filler)

▶ property.exactly(cardinality, Class) for an exact cardinality restriction

▶ property.min(cardinality, Class) and property. max(cardinality, Class)
for minimal and maximal cardinality restrictions, respectively

Description Logic cont.

The logical operators NOT (complement), AND (intersection), and OR
(union) are obtained as follows:

▶ Not(Class)

▶ And([Class1, Class2,...]) or Class1 & Class2 & ...

▶ Or([Class1, Class2,...]) or Class1 | Class2 | ...

▶ A set of individuals is obtained as follows:
OneOf([individual1, individual2,...])

▶ The inverse of a property is obtained as follows:
Inverse(Property)

▶ A property chain is obtained as follows:
PropertyChain([Property1, Property2,...])

Examples

with onto:

class Pseudomonas(onto.Bacterium):

is_a = [

onto.has_shape.some(onto.Rod),

onto.has_shape.only(onto.Rod),

onto.has_grouping.some(onto.Isolated | onto.InPair),

onto.gram_positive.value(False)

]

constructor = onto.Streptococcus.equivalent_to[0]

if isinstance(constructor, And):

print("And", constructor.Classes)

prints:

constructor.type, constructor.value)

And [bacteria.Bacterium,

bacteria.has_shape.some(bacteria.Round),

bacteria.has_shape.only(bacteria.Round),

bacteria.has_grouping.some(bacteria.InSmallChain),

bacteria.has_grouping.only(Not(bacteria.Isolated)),

bacteria.gram_positive.value(True)]

Summary

▶ Ontologies are used for representing abstract semantic properties of
knowledge graphs.

▶ They have a powerful lanagueg for defining semantic conditions on
knowledge graphs.

▶ OWL is an extension of RDF to represent these semangtic conditions

▶ owlready2 is a python library that extends the functionality of rdflib
to the OWL format.

Next week we will look at entailment and reasoning with OWL,
Description Logics and the Pellet Reasoner.

	Deductive Knowledge
	OWL in python

