
CITS3005 Knowledge Representation
Lecture 8: Knowledge Graph Schema

Tim French

The University of Western Australia

2023

Knowledge Graph Schemas

In this lecture we will look into the creation and use of knowledge graphs
in some more detail, particularly focusing on the creation of semantic
value through schema and constraints.
In particular, we will:

▶ Review creation querying and editing of RDF knowledge graphs
using rdflib in python.

▶ Consider the problem of identity and context in knowledge.

▶ Consider Semantic Schema and the specification of knowledge under
the open world assumption

▶ Use the extension RDFS for specifying semantic schema.

▶ Consider Validating Schema for specifying and checking constraints
over knowledge graphs.

▶ Use SHACL to specify shapes and validate graphs.

This lecture is based on Chapter 3 of Knowledge Graphs by Hogan et al.

Example Knowledge Graph

Consider the following knowledge graph taken from https:

//medium.com/wallscope/creating-linked-data-31c7dd479a9e

for representing all information taken from the modern Olympics.

The extraction and development process for this is described in the linked
article.

https://medium.com/wallscope/creating-linked-data-31c7dd479a9e
https://medium.com/wallscope/creating-linked-data-31c7dd479a9e

Prefixes, URIs and Identity

The Olympics knowledge uses a range of prefixes to represent the names
of concepts:

These are Uniform Resource Identifiers (URIs) which are essentially URLs
but without the requirement to be network-accessible.
Uniformity is a powerful tool for reusing and communicating concepts.

Some common URIs

There are several open vocabularies describing common concepts:
1. RDF/RDFS (Resource Description

Framework): basic definitions for
types, subclasses, properties etc.

2. XSD (XML Schema Datatypes):
Common datatypes such as integer,
date, list, that can be specified in
XML.

3. FOAF (Friend of a Friend): Concepts
for describing people and their contact
details.

4. SKOS (Simple Knowledge
Organisation Schema): concepts
describing knowledge mappings.

5. GeoNames: Geographical concepts,
aligned with a crowd-sourced data
base.

6. Music Ontology: Concepts describing
music, artists, recordings etc.

Interacting with a knowledge graph

The Graph class in rdflib can be used to load sets of triples in various
formats:

from rdflib import Graph

g = Graph()

g.parse("http://www.w3.org/People/Berners-Lee/card")

g.serialize(destination="tbl.ttl")

There are a variety of ways to represent the RDF:

See https://ontola.io/blog/rdf-serialization-formats for a
description of the different formats.

https://ontola.io/blog/rdf-serialization-formats

Creating and removing triples in rdflib

In RDF the atoms are URIs, blank nodes or literals:

from rdflib import URIRef, BNode, Literal

from rdflib.namespace import FOAF, RDF

bob = URIRef("http://example.org/people/Bob")

linda = BNode() # a GUID is generated

name = Literal("Bob") # passing a string

age = Literal(24) # passing a python int

height = Literal(76.5) # passing a python float

g.add((bob, RDF.type, FOAF.Person))

g.add((bob, FOAF.name, name))

g.add((bob, FOAF.age, age))

g.add((bob, FOAF.knows, linda))

g.add((linda, RDF.type, FOAF.Person))

g.add((linda, FOAF.name, Literal("Linda")))

print(g.serialize())

Triples can also be removed using g.remove(..)

The Graph Object

In rdflib, the Graph object is iterable, and you can check membership

for s, p, o in someGraph:

if not (s, p, o) in someGraph:

raise Exception("Iterator / Container Protocols are Broken!!")

and basic set operations are implemented:

There are also methods for extracting all triples, subjects, predicates etc.

SPARQL queries in rdflib

SPARQL (SPARQL Protocol and RDF
Query Language) is the query language
we use to shape and return linked data
from a triplestore.
SPARQL queries contain triple patterns,
much like the data itself, which utilise
the relationships to quickly navigate any
linked data. This language is common
for all linked data so queries can traverse
across multiple RDF databases at once.

SPARQL Syntax

SPARQL syntax is similar to SQL:
SELECT vars WHERE pattern FILTER condition GROUP/SORT

The main difference is that the pattern uses subgraph matching:

Find all athletes with at least one medal.
Note that the subgraph pattern is presented as a set of branching nodes,
with common variables.

SPARQL Examples
Aggregation:

find the average height and
weight of each country’s atheletes

Filtration:

find every athletes with “louis” in
their name

SPARQL Examples
Nested Queries:

count the number of atheletes by
gender, for a given set of cities

Services:

find the team sizes from dbpedia

Schemas

One of the benefits of modelling data as graphs is the option to postpone
the definition of a schema.
Schemata can be used to prescribe a high-level structure and/or
semantics that the graph follows or should follow.
This provides critical context for the data in the graph, and this context
provides meaning (semantics) for the data.
We discuss two types of graph schemata:

▶ Semantic schema provide context of classes for entities and
properties, allowing new relations (, knowledge) to be deduced
through a process of entailment. This is realised through an
extension to RDF called RDFS.

▶ Validating schema provide constraints for what should be considered
valid data. They often take the form of integrity constraints (e.g
every licensed car should have a registered owner). and are specified
via shapes. This is realised using the Shape Constraint Language,
ShaCL.

Semantic Schema

A semantic schema allows for defining the meaning of high-level terms
which facilitates reasoning using those terms.
In the figure we can see some natural groupings of nodes based on the
types of entities to which they refer: Event, City, etc.

Aside from classes, we may also wish to define the semantics of edge
labels, aka properties. We may consider that the properties city and
venue are sub-properties of a more general property location. We may
also consider, for example, that bus and flight are both sub-properties of
a more general property connects to.

RDF Schema

A prominent standard for defining a semantic schema for (RDF) graphs is
the RDF Schema (RDFS) standard, which allows for defining sub-classes,
sub-properties, domains, and ranges amongst the classes and properties
used in an RDF graph.

The definitions in RDFS come with the RDF notion of type to let types
and properties be inferred from other relations. This allows us to define
concepts in terms of other concepts.
RDFS defines

▶ predefined triples (in RDF, compatible with rdflib).

▶ rules for how some triples cab entail additional triples.

RDFS Syntax

rdfs:Class represents a type of similar resources, which are the
individuals in the class.

▶ class membership is expressed by the rdf:type property: <RDF
individual> rdf:type <RDFS class> or <RDF individual> a

<RDFS class>

▶ an individual can belong to several classes

▶ e.g., dbpedia:Person, schema:Person, foaf:Person.

rdfs:subClassOf is the property that states membership of one class
necessitates membership of another class:

▶ allows you to describe properties at different levels of abstraction,
and promotes reuse.

▶ this allows improved completeness, and can help managing the
merging of different vocabularies.

▶ dbpedia:Politician rdfs:subClassOf dbpedia:Person

Entailment and Syllogism
These simple properties can rep-
resent reasoning!
From all men are mortal and
Socrates is a man we can deduce
Socrates is mortal.
This is one of the 16 rules built
into RDFS:
From
ex:Man rdfs:SubclassOf ex:Mortal

and
ex:socrates rdf:type ex:Man,
Infer
ex:socrates rdf:type ex:Mortal.

Example: Transitivity

RDFS subclass and subproperties should be transitive. A subclass of a
subclass of A should, itself, be a subclass of A.
That is, the triples:
?c1 rdfs:subClassOf ?c2. and
?c2 rdfs:subClassOf ?c3.

entail ?c1 rdfs:subClassOf ?c3.

This entailment could be realised using the SPARQL query:

...prefixes....

INSERT {?c1 rdfs:subClassOf ?c3. }

WHERE { ?c1 rdfs:subClassOf ?c2. ?c2 rdfs:subClassOf ?c3.}

However, we would like an entailment engine to perform this inference
automatically.

Domain and Range of properties

The subjects and objects that occur in triples along with some property
belong to certain classes.
For example, given the triple <subject> ex:presidentOf <object> .

we may know that:

▶ the <subject> has rdf:type dbpedia:President

▶ the <object> has rdf:type dbpedia:Country

This is part of the semantics of ex:president in the context of the ex:
vocabulary (note in another context, say, the president of a club, this
would not be valid.)
We can express this property as follows:
ex:presidentOf rdfs:domain dbpedia:President .

ex:presidentOf rdfs:range dbpedia:Country .

Utilities and limitations of RDFS

Utility Properties in RDFS

▶ rdfs:label a
human-readable label

▶ rdfs:comment a
human-readable comment

▶ rdfs:seeAlso reference to
further information

▶ rdfs:isDefinedBy a
human-readable definition (is
a rdfs:subPropertyOf

rdfs:seeAlso)

Limitations: RDFS cannot ex-
press:

▶ my ancestors’ ancestors are
also my ancestors

▶ a Person has a unique birth
number

▶ a Person has exactly one
father

▶ a SoccerTeam has 11 players,
but a BasketballTeam has 5

▶ classes with different URIs
actually represent the same
class

▶ properties with different URIs
are actually the same

▶ two individuals with different
URIs are actually different

▶ a class is a combination
(union or intersection) of
other classes

▶ a class is a negation of
another class

... but Web Ontology Language
(OWL) can be used for this.

Open World Assumption

From the graph of Figure 2.1, we cannot assume that there is no flight
between Vina del Mar and Arica.
In contrast, if the Closed World Assumption (CWA) were adopted (e.g.
database systems) it would be assumed that the data graph is a complete
description of the world, thus allowing to assert with certainty that no
flight exists between the two cities.
Systems that do not adopt the CWA are said to adopt the Open World
Assumption (OWA). RDFS is designed to operate with the OWA. It
specifies logical closures of entailments, but never asserts that something
is not known.
However, there are many cases where we would like the knowledge graph
to be a (relatively) complete description of the modelled world.

Validating Schema

While RDFS allows us to take some minimal description of a world and
extend it through entailment, Validating Schema specify the minimum
requirements that a valid knowledge graph should achieve.
For example, we may wish to ensure that all events have at least a name,
a venue, a start date, and an end date. Or we may wish to ensure that
the city of an event is stated to be a city (rather than just inferring that
it is a city).
We can define such constraints in a validating schema and validate the
data graph with respect to the resulting schema, listing constraint
violations (if any).

Shapes

The standard approach to representing schema constraints is to use
shapes.
Shapes are similar to the graph patterns used by SPARQL: shapes target
a set of nodes in a data graph and specifies constraints on those nodes.
The shape’s target can be defined in many ways, such as targeting all
instances of a class, the domain or range of a property, the result of a
query, etc. Constraints can then be defined on the targeted nodes, such
as to restrict the number or types of values taken on a given property,
the shapes that such values must satisfy, etc.

A shapes graph is formed from a set of interrelated shapes. Shapes
graphs can be depicted as UML-like class diagrams, with constraints on
the properties indicating necessary membership.
(Note we can also specify upper bounds!)

Checking Shapes

Given a shape and a targeted node, we can check if the node conforms to
that shape or not, which may require checking conformance of other
nodes.

Conformance dependencies may also be recursive, where the conformance
of Santiago to City requires that it conforms to Place, which requires
that Viña del Mar and Arica conform to Place, and so on.

Conversely, EID16 does not conform to Event, as it does not have the
start and end properties required by the example shapes graph.

When declaring shapes, the data modeller may not know in advance the
entire set of properties that some nodes can have (now or in the future).
An open shape allows the node to have additional properties not specified
by the shape, while a closed shape does not.

Shape paradoxes

Practical languages for shapes often support additional Boolean features,
such as conjunction (and), disjunction (or), and negation (not) of shapes.
However, shapes languages that freely combine recursion and negation
may lead to semantic problems, depending on how their semantics are
defined.

To illustrate, consider the following case inspired by the Barber paradox
(or Russel’s Paradox), involving a shape Barber whose conforming nodes
shave at least one node conforming to Person and (not Barber).
Now, given (only) Bob shave Bob with Bob con-
forming to Person, does Bob conform to Barber?
If Bob conforms to Barber, then Bob violates the
constraint by not shaving at least one node con-
forming to Person and (not Barber).
If Bob does not conform to Barber – then Bob sat-
isfies the Barber constraint by shaving such a node.

Shape Constraint Language (SHACL)

SHACL constrains the structure of RDF (and RDFS, OWL...) graphs. It
is a W3C standard (from around 2018) used to validate:

▶ open and other KGs we want to reuse

▶ graphs resulting from user input

▶ the KGs we make ourselves

SHACL constraints are, themselves, written in RDF and a shapes graph is
used to validate a data graph
SHACL validator for rdf implemented as PySHACL.

Syntax: Node Shapes

Node shapes specify constraints on focus nodes:
<node_shape_URI> a sh:NodeShape

▶ the focus nodes are often specified as
sh:targetClass <class_URI>

▶ the node constraints apply to all instances of the target class

▶ alternatives:
sh:targetNode, sh targetSubjectsOf, sh:targetObjectsOf

▶ constraints on each focus node itself:
sh:class <class_URI> or
sh:datatype <datatype_URI> or
sh:in (...list of URIs/values...) or
sh:hasValue ...URI/value... or
sh:nodeKind sh:IRI/sh:Literal/sh:BlankNode or
sh:pattern <regular_expression>.

▶ constraints on properties from the focus node either:
by shape URI:
sh:property <property_shape_URI>, or by anonymous node:
sh:property [a sh:PropertyShape ; sh:path <property_URI>...] ;

Syntax: Property Shapes

Property shapes specify constraints about the values that can be reached
from a focus node by some path:
<property_shape_URI> a sh:PropertyShape
▶ the property is often specified as sh:path <property_URI>
▶ alternatively, SPARQL like property paths can be used
▶ the property constraints apply to all uses of the property path from

the focus nodes, and all values reached by the property path from
the focus nodes

▶ property constraints: sh:minCount, sh:maxCount, ...
▶ node constraints about the property value (the object resource or

literal): sh:class, sh:datatype, sh:nodeKind, sh:pattern, ...

Example

Every paper is the subject of exactly 1 year property:

kg:MainPaperShape a sh:NodeShape ;

sh:targetClass kg:MainPaper ;

sh:property [

sh:path kg:year ;

sh:minCount 1 ;

sh:maxCount 1

].

SHACL constraint structure

SHACL constrains node shapes and property shapes.
The node shapes are mostly collections of property shapes pertaining to
the same class.

kg:MainPaperShape

a sh:NodeShape ;

sh:targetClass kg:MainPaper ;

sh:property kg:SubjectShape .

kg:SubjectShape

a sh:PropertyShape ;

sh:path dcterm:subject ;

sh:minCount 1 ;

sh:or (

[sh:class th:Theme]

[sh:class ss:Topic]) ;

sh:nodeKind sh:IRI .

Validation

Reports the results applying a SHACL shapes graph to a data graph a
sh:ValidationReport has three components:

▶ sh:conforms (either true or false)

▶ a results_text (from pySHACL)

▶ zero or more sh:ValidationResults

Validation with pySHACL

Programming pySHACL

pip install pyshacl

from pyshacl import validate

from rdflib import Graph

data_graph = Graph()

data_graph.parse(’...’)

shacl_str = \"" ... \""

shacl_graph = Graph()

shacl_graph.parse(data=shacl_str, format=’ttl’)

results = validate(

data_graph,

shacl_graph=shacl_graph,

inference=’both’

)

(conforms, results_graph, results_text) = results

print(results_text)

Formal Definition

Definition
Shape A shape ϕ is defined as:

ϕ ::= ⊤ true
| ∆N node belongs to set N
| ΨC node satisfies condition C
| ϕ ∧ ϕ conjunction
| ¬ϕ negation
| @S shape with label S
| p̂ϕ{min,max} range of p edges satsifyingϕ

Definition

Shapes schema A shapes schema is defined as a tuple Σ = (Φ,S , λ)
where Φ is a set of shapes, S is a set of shape labels, and λ : S −→ Φ is
a total function from labels to shapes.

Formal Evaluation

Definition

Shapes map Given a directed edge-labelled graph G = (V ,E , L) and a
shapes schema Σ = (Φ,S , λ), a shapes map is a (partial) mapping
σ : V × S −→ {0, 1}.

Definition

Shape Evaluation Given a shapes schema, Σ = (Φ,S , λ), a directed
edge-labeled graph G = (V ,E , L), a node v ∈ V and a total shapes map
σ, the shape evaluation function ϕG ,v ,σ is defined recursively:

⊤G ,v ,σ = 1

∆G ,v ,σ
N = 1iffv ∈ N

ΨCG ,v ,σ = 1iffC (v)

ϕ1 ∧ ϕG ,v ,σ
2 = minϕG ,v ,σ

1 , ϕG ,v ,σ
2

¬ϕG ,v ,σ = 1− [ϕ]G ,v ,σ

@SG ,v ,σ = 1iffσ(v , s) = 1

p̂ϕ{ℓ, u}G ,v ,σ = 1iff ℓ ≤ |{(v , p, u)|ϕ(G , u, σ) = 1}| ≤ u

Shapes Target

Typically a shapes target is defined that requires certain nodes to satisfy
certain shapes.

Definition

Shapes target Given a directed edge-labelled graph G = (V ,E , L) and a
shapes schema Σ = (Φ,S , λ), a shapes target T ⊆ V × S is a set of
pairs of nodes and shape labels from G and Σ.

Lastly, we define the notion of a valid graph under a given shapes schema
and target based on the existence of a shapes map satisfying certain
conditions.

Definition

Valid graph Given a shapes schema Σ = (Φ,S , λ), a directed
edge-labelled graph G = (V ,E , L), and a shapes target T , we say that G
is valid under Σ and T if and only if there exists a shapes map σ such
that, for all s ∈ S and v ∈ V it holds that σ(v , s) = λ(s)G ,v ,σ and
(v , s) ∈ T implies σ(v , s) = 1.

Summary

We have considered pragmatic aspects of knowledge graphs where
common constraints and inferences can be included in the schema of the
graph.
However, it is not clear if this enough. Can we describe all inference and
knowledge in this format?
Next we will move in this direction, by considering the study of
everything! Ontologies! (... and the web ontology language, OWL).

	Part I: RDF Queries and Operations
	Part I: RDF Schemas

