
CITS3005 Knowledge Representation
Lecture 7: Knowledge Graphs

Tim French

The University of Western Australia

2023

Part II: Knowing and Reasoning at Scale

The study of knowledge, deduction and reasoning is fascinating from an
introspective point: we are interested in how we are intelligent, and there
are many interesting philosophical questions that arise from this.
Machines are better at simple, repeatable processes that can be done
very quickly, and this is where knowledge representation is most likely to
make an impact.
In this section of the course we will look at how knowledge representation
technologies can be used to store, process, and search large information
stores.

Technologies and terminologies

▶ A database is intended to store information, and allow it to be
retrieved efficiently. However the process by which it is retrieved is
via query language over a schema the is designed external to the
database. That is, the meaning of the information in the database is
external (with the designer), and the semantic interpretation of the
data is only incorporated in the interface of the database.

▶ A knowledge graph is an attempt to build a universal schema for
interacting with data, via triples. Arbitrary facts can be represented
as triples, and we can extend this to rules. The knowledge graph can
contain its own schema and the relationships between types and
entities.

▶ An ontology is a formal representation of the meaning of data in a
knowledge graph. This is achieved via a series of logical constraints
over the relations in a knowledge graph, giving them meaning. An
ontology can be stored in a knowledge graph.

Functionality

When considering these technologies we will consider the following
functionalities:

▶ Representation: How is information represented and stored (property
graph, graph DB, triple store).

▶ Querying: How is information retrieved (sparql, cypher)

▶ Semantics: How are is meaning represented (OWL, SWRL, SHACL)

▶ Proof: How is reasoning demonstrated (Pellet, Hermit).

▶ Learning: How is knowledge derived (Induction, Graph Neural
Networks).

Overview

▶ In this lecture we will look at the basic concept of a knowledge
graph, and how it relates to prolog, problog and databases. We will
look at the basic methods to define and edit schema, and the basic
methods to query graph databases with SPARQL or Cypher.

▶ Week 8 we will consider how graph schema are specified and used to
inject meaning into knowledge graphs.

▶ In week 9 we will then consider ontologies and reasoning, and
consider first order logic representations of knowledge at scale.

▶ In week 10, we will the look at the challenges of Ontology Design
and Knowledge Engineering, and the importance of consistency and
reuse.

▶ Week 11 will consider the problems of incomplete knowledge and
knowledge graph induction.

Tools

The tools we will use for this will generally come from the W3C semantic
web stack, and work with python: That is we will use RDF for triple
representations (and RDFLib in python, as a triple store) OWL for
representing ontologies (and owlready2 as a python library), with
networkx for visualisation.
The main texts we will rely on in the section of the course are:

▶ Knowledge Graphs (Hogan et al., General structure and theory);

▶ Ontologies with Python (Jean-Baptiste, OWlReady2); and

▶ An Introduction to Ontology Engineering (Keet).

Examples

What are Knowledge Graphs?

Definition
A knowledge graph is a graph of data intended to accumulate and convey
knowledge of the real world, whose nodes represent entities of interest
and whose edges represent relations between these entities.

By knowledge, we refer to something that is known. Knowledge may be
composed of simple statements, such as “Santiago is the capital of
Chile”, or quantified statements, such as “all capitals are cities”.
Deductive methods can then be used to entail and accumulate further
knowledge (e.g., “Santiago is a city”).

Databases vs Knowledge Graphs

Consider an Event table with five columns: Event(name, venue,

type, start, end) where name and start together form the primary
key of the table.
This is efficient from a memory and processing point of view, but does
not sit well with the open world nature of data. Is this everything we
want to know about Events.
Alternatively we can give an event an id, and each property can be
related to this id: EventName(id,name), EventStart(id,start),

EventEnd(id,end), EventVenue(id,venue), EventType(id,type)

This schema essentially represent columns as edges from an entity to a
value as a representation of some property.
Knowledge graph has several interpretations: we will formalise them as
directed edge-labelled graphs.

Directed Edge Labelled Graphs

Directed Edge Labelled Graphs is defined as a set of nodes – like
Santiago, EID16 and a set of directed labelled edges between those
nodes, like Santa Lucı́a - city - Santiago.

Definitions

We denote by Con a countably infinite set of constants.

Definition (Directed edge-labeled graph)

A directed edge-labelled graph is a tuple G = (V ,E , L), where V ⊆ Con
is a set of nodes, L ⊆ Con is a set of edge labels, and E ⊆ V × L× V is
a set of edges.

To efficiently represent knowledge heterogeneous graphs and property
graphs (like Neo4J databases) have been defined, however we will use
Directed edge-labelled graphs as they are theoretically simpler and more
flexible.

Resource Description Framework (RDF)

RDF is a simple but powerful realisation of directed edge-labelled graphs.
RDF stands for:
▶ Resource: Everything that can have a unique identifier (URI).
▶ Description: attributes, features, and relations of the resources
▶ Framework: model, languages and syntaxes for these descriptions

RDF was published as a W3C recommendation in 1999.

Example

RDF models (KGs) consist of statements (triples) of
▶ subject predicate object, or
▶ subject predicate literal

<rdf:RDF

xmlns:rov=\http://www.w3.org/TR/vocab-regorg/ \

xmlns:org=\http://www.w3.org/TR/vocab-org/"

xmlns:locn=\http://www.w3.org/ns/locn" >

<rov:RegisteredOrganization rdf:about=\http://example.com/org/2172798119">

<rov:legalName> \Nike"< /rov:legalName>

<org:hasRegisteredSite rdf:resource=\http://example.com/site/1234"/>

</rov:RegisteredOrganization>

<locn:Address rdf:about=\http://example.com/site/1234"/>

<locn:fullAddress>

" Dahliastraat 24, 2160 Wommelgem"

</locn:fullAddress>

</locn:Address>

</rdf:RDF>

Example continued

While XML is useful for machine readability, turtle format (and others)
have been developed to be more human readable:

@prefix rov: <http://www.w3.org/TR/vocab-regorg/> .

@prefix org: <http://www.w3.org/TR/vocab-org/> .

@prefix locn: <http://www.w3.org/ns/locn####> .

<http://example.com/org/2172798119 >

a <rov:RegisteredOrganization> ;

rov:legalName \Niké \;

org:hasRegisteredSite <http://example.com/site/1234> .

<http://example.com/site/1234>

a <locn:Address> ;

locn:fullAddress \Dahliastraat 24, 2160 Wommelgem" .

RDF in Python

RDF is supported in Python using rdflib. This supports a triple store that
allows creation, editing and querying of knowledge graphs.

Querying Knowledge Graphs

At the core of every structured query language for graphs lie basic graph
patterns. Terms in basic graph patterns are thus divided into constants,
such as Africa or venue, and variables, which we prefix with question
marks, such as ?event or ?rel.
A basic graph pattern is evaluated against the data graph by generating
mappings from terms to constants in the graph, so the pattern is
contained in the graph.

Graph Patterns

For these definitions, we introduce a countably infinite set of variables
Var ranging over (but disjoint from: Con ∩Var = ∅) the set of constants.
We let Term = Con ∪ Var .

Definition (Basic directed edge-labelled graph pattern)

We define a basic directed edge-labelled graph pattern as a tuple
Q = (V ,E , L), where V ⊆ Term is a set of node terms, L ⊆ Term is a
set of edge terms, and E ⊆ V × L is a set of edges (triple patterns).

For evaluating graph patterns, define a partial mapping µ : Var → Con
from variables to constants, whose domain is dom(µ). Given a basic
graph pattern Q, let Var(Q) denote the set of all variables in Q We
further denote by µ(Q) the image of Q under µ, meaning that any
variable v ∈ Var(Q) ∩ dom(µ) is replaced in Q by µ(v).

Evaluating Graph Patterns

For two directed edge-labelled graphs G1 = (V 1,E1, L1) and
G2 = (V 2,E2, L2), we say that G1 is a sub-graph of G2, denoted
G1 ⊆ G2, if and only if V 1 ⊆ V 2, E1 ⊆ E2, and L1 ⊆ L2.

Definition (Evaluation of a basic graph pattern)

Let Q be a basic graph pattern and let G be a data graph. The
evaluation of the basic graph pattern Q over G is the set of mappings

Q(G) = {µ|µ(Q) ⊆ G and dom(µ) = Var(Q)}

Complex Graph Patterns

Complex graph patterns are built from simple graph patterns using a
relational algebra, with the operators projection (π), selection (σ),
renaming (ρ), union (∪), difference (-), and join (▷◁).

Definition (Complex graph pattern)

Complex graph patterns are defined recursively, as follows:

▶ If Q is a basic graph pattern, then Q is a complex graph pattern.

▶ If Q is a complex graph pattern, and V ⊆ Var(Q), then πV (Q) is a
complex graph pattern.

▶ If Q is a complex graph pattern, and R is a selection condition with
Boolean and equality connectives (∧, ∨, ¬, =), then σR(Q) is a
complex graph pattern.

▶ If both Q1 and Q2 are complex graph patterns, then Q1 ▷◁ Q2,
Q1 ∪ Q2, and Q1− Q2

Evaluating Complex Graph Patterns

Letting R denote a Boolean selection condition and µ a mapping, we
denote by µ |= R that µ satisfies the Boolean condition.
Two mappings µ1 and µ2 are compatible, denoted µ1 ∼ µ2, if and only if
µ1(v) = µ2(v) for all v ∈ dom(µ1) ∩ dom(µ2).

Definition (Complex graph pattern evaluation)

If Q is a basic graph pattern, then Q(G) is given. Otherwise, Q(G)is
defined as follows:

πV (Q)(G) = {mu[V] | µ ∈ Q(G)}
σR(Q)(G) = {µ | µ ∈ Q(G), µ |= R}
Q1 ▷◁ Q2 = {µ1 ∪ µ2 | µ1 ∈ Q1(G), µ2 ∈ Q2(G), µ1 ∼ µ2}
Q1 ∪ Q2 = {µ | µ ∈ Q1 or µ ∈ Q2}

Q1 − Q2(G) = {µ | µ ∈ Q1(G), µ /∈ Q2(G)}

Querying RDF with SPARQL

SPARQL is the Simple Protocol and RDF Query Language and is a data
manipulation language for RDF and triple stores like Blazegraph.
SPARQL queries represent Complex Graph Patterns:

SELECT ?person ?museum WHERE{

?person ex:likes ?painting .

?painting ex:is_in ?museum .

}

SELECT queries in SPARQL

▶ Basic form: SELECT projection WHERE { pattern }
▶ the projection is a list of variables
▶ the pattern is (essentially) a list of triples
▶ returns a table with one row per result and
▶ one column per projection variable

▶ Optional and combinable variations:
▶ SELECT * WHERE { ... }
▶ SELECT * WHERE { ..pattern.. MINUS {..pattern..} }
▶ SELECT * WHERE { ..pattern.. UNION ..pattern.. }

Navigational Graph Patterns

A path expression r is a regular expression that allows for matching
arbitrary-length paths between two nodes using a regular path query
(x , r , y), where x and y can be variables or constants.

▶ The base path expression is where r is a constant (an edge label).

▶ If r is a path expression, then r∗ (Kleene star: zero-or-more) is also
a path expression.

▶ If r1 and r2 are path expressions, then r1 | r2 (disjunction) and r1 · r2
(concatenation) are also path expressions.

▶ If r is a path expression, then r−(inverse) is a path expression.

Navigational Patterns in SPARQL

Property paths (in SPARQL 1.1):

▶ Concatenation: a\b (means “first a, then a’s b”)

▶ Inversion: â (means “a backwards”)

▶ Grouping: (...) (nested composite properties)

▶ Repetition: a∗ (0:n), a+ (1:n), a? (0:1)

▶ Alternative: a | b (either a or b)

▶ Negation: !a (any other property than a)

For example: ?uncle ^(:hasParent / :hasBrother) ?nephew . and
?uncle (^:hasBrother / ^:hasParent) ?nephew . are the same
relation.

Query Interfaces

Knowledge Graphs Systems often provide support for interacting without
using raw SPARQL, including

▶ Faceted browsing: Users start by specifying a simple search. They
are then presented with a set of matching results, and a set of
facets, which are typically attributes and values present in the
current results set.

▶ Query Building: Users are provided with a form or graphical
interface that can be used to specify a graph query without needing
to understand the syntax of a specific query language.

▶ Query-by-example: Users provide examples of positive and
sometimes negative answers to their queries, and the system seeks
to reverse engineer a suitable query.

▶ Question answering: Users express their queries as questions in
natural language; for example, they might ask “What food festivals
will be held in Arica?”

	Part II: Knowing and Reasoning at Scale
	Knowledge Graph Theory
	Resource Description Framework
	Querying knowledge graphs

